Domain Adaptation in Computer Vision Applications (eBook)

GABRIELA CSURKA (Herausgeber)

eBook Download: PDF
2017 | 1st ed. 2017
X, 344 Seiten
Springer International Publishing (Verlag)
978-3-319-58347-1 (ISBN)

Lese- und Medienproben

Domain Adaptation in Computer Vision Applications -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the field, addressing not only classical image categorization, but also other computer vision tasks such as detection, segmentation and visual attributes.

Topics and features: surveys the complete field of visual DA, including shallow methods designed for homogeneous and heterogeneous data as well as deep architectures; presents a positioning of the dataset bias in the CNN-based feature arena; proposes detailed analyses of popular shallow methods that addresses landmark data selection, kernel embedding, feature alignment, joint feature transformation and classifier adaptation, or the case of limited access to the source data; discusses more recent deep DA methods, including discrepancy-based adaptation networks and adversarial discriminative DA models; addresses domain adaptation problems beyond image categorization, such as a Fisher encoding adaptation for vehicle re-identification, semantic segmentation and detection trained on synthetic images, and domain generalization for semantic part detection; describes a multi-source domain generalization technique for visual attributes and a unifying framework for multi-domain and multi-task learning.

This authoritative volume will be of great interest to a broad audience ranging from researchers and practitioners, to students involved in computer vision, pattern recognition and machine learning.



Dr. Gabriela Csurka is a Senior Scientist in the Computer Vision Team at Naver Labs Europe, Meylan, France.

Dr. Gabriela Csurka is a Senior Scientist in the Computer Vision Team at Naver Labs Europe, Meylan, France.

1. A Comprehensive Survey on Domain Adaptation for Visual Applications Gabriela Csurka 2. A Deeper Look at Dataset Bias Tatiana Tommasi, Novi Patricia, Barbara Caputo, and Tinne Tuytelaars Part I: Shallow Domain Adaptation Methods 3. Geodesic Flow Kernel and Landmarks: Kernel Methods for Unsupervised Domain Adaptation Boqing Gong, Kristen Grauman, and Fei Sha 4. Unsupervised Domain Adaptation based on Subspace Alignment Basura Fernando, Rahaf Aljundi, Rémi Emonet, Amaury Harbard, Marc Sebban, and Tinne Tuytelaars 5. Learning Domain Invariant Embeddings by Matching Distributions Mahsa Baktashmotlagh, Mehrtash Harandi, and Mathieu Salzmann 6. Adaptive Transductive Transfer Machines: A Pipeline for Unsupervised Domain Adaptation Nazli Farajidavar, Teofilo de Campos, and Josef Kittler 7. What To Do When the Access to the Source Data is Constrained? Gabriela Csurka, Boris Chidlovskii, and Stéphane Clinchant Part II: Deep Domain Adaptation Methods 8. Correlation Alignment for Unsupervised Domain Adaptation Baochen Sun, Jiashi Feng, and Kate Saenko 9. Simultaneous Deep Transfer Across Domains and Tasks Judy Hoffman, Eric Tzeng, Trevor Darrell, and Kate Saenko 10. Domain-Adversarial Training of Neural Networks Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky Part III: Beyond Image Classification 11. Unsupervised Fisher Vector Adaptation for Re-Identification Usman Tariq, Jose A. Rodriguez-Serrano, and Florent Perronnin 12. Semantic Segmentation of Urban Scenes via Domain Adaptation of SYNTHIA German Ros, Laura Sellart, Gabriel Villalonga, Elias Maidanik, Francisco Molero, Marc Garcia, Adriana Cedeño, Francisco Perez, Didier Ramirez, Eduardo Escobar, Jose Luis Gomez, David Vazquez, and Antonio M. Lopez 13. From Virtual to Real World Visual Perception using Domain Adaptation – The DPM as Example Antonio M. López, Jiaolong Xu, José L. Gómez, David Vázquez, and Germán Ros 14. Generalizing Semantic Part Detectors Across Domains David Novotny, Diane Larlus, and Andrea Vedaldi Part IV: Beyond Domain Adaptation: Unifying Perspectives 15. A Multi-Source Domain Generalization Approach to Visual Attribute Detection Chuang Gan, Tianbao Yang, and Boqing Gong 16. Unifying Multi-Domain Multi-Task Learning: Tensor and Neural Network Perspectives Yongxin Yang and Timothy M. Hospedales

Erscheint lt. Verlag 10.9.2017
Reihe/Serie Advances in Computer Vision and Pattern Recognition
Advances in Computer Vision and Pattern Recognition
Zusatzinfo X, 344 p. 107 illus., 101 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte computer vision • data analytics • Deep learning • Domain-Adversarial Training • Domain Shift • Feature Transformation • Geodesic flow • Grassman Manifold • image categorization • Landmark Selection • Marginalized Denoising Autoencoders • Maximum Mean Discrepancy • pattern recognition • Subspace Alignment • subspace learning • Transductive Transfer Learning • Unsupervised Domain Adaptation • Visual Applications
ISBN-10 3-319-58347-6 / 3319583476
ISBN-13 978-3-319-58347-1 / 9783319583471
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 14,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43