Modern Multivariate Statistical Techniques - Alan J. Izenman

Modern Multivariate Statistical Techniques

Regression, Classification, and Manifold Learning

(Autor)

Buch | Softcover
733 Seiten
2016 | Softcover reprint of the original 1st ed. 2008
Springer-Verlag New York Inc.
978-1-4939-3832-2 (ISBN)
90,94 inkl. MwSt
Remarkable advances in computation and data storage and the ready availability of huge data sets have been the keys to the growth of the new disciplines of data mining and machine learning, while the enormous success of the Human Genome Project has opened up the field of bioinformatics.


These exciting developments, which led to the introduction of many innovative statistical tools for high-dimensional data analysis, are described here in detail. The author takes a broad perspective; for the first time in a book on multivariate analysis, nonlinear methods are discussed in detail as well as linear methods. Techniques covered range from traditional multivariate methods, such as multiple regression, principal components, canonical variates, linear discriminant analysis, factor analysis, clustering, multidimensional scaling, and correspondence analysis, to the newer methods of density estimation, projection pursuit, neural networks, multivariate reduced-rank regression, nonlinear manifold learning, bagging, boosting, random forests, independent component analysis, support vector machines, and classification and regression trees. Another unique feature of this book is the discussion of database management systems.


This book is appropriate for advanced undergraduate students, graduate students, and researchers in statistics, computer science, artificial intelligence, psychology, cognitive sciences, business, medicine, bioinformatics, and engineering. Familiarity with multivariable calculus, linear algebra, and probability and statistics is required. The book presents a carefully-integrated mixture of theory and applications, and of classical and modern multivariate statistical techniques, including Bayesian methods. There are over 60 interesting data sets used as examples in the book, over 200 exercises, and many color illustrations and photographs.

and Preview.- Data and Databases.- Random Vectors and Matrices.- Nonparametric Density Estimation.- Model Assessment and Selection in Multiple Regression.- Multivariate Regression.- Linear Dimensionality Reduction.- Linear Discriminant Analysis.- Recursive Partitioning and Tree-Based Methods.- Artificial Neural Networks.- Support Vector Machines.- Cluster Analysis.- Multidimensional Scaling and Distance Geometry.- Committee Machines.- Latent Variable Models for Blind Source Separation.- Nonlinear Dimensionality Reduction and Manifold Learning.- Correspondence Analysis.

Erscheinungsdatum
Reihe/Serie Springer Texts in Statistics
Zusatzinfo XXV, 733 p.
Verlagsort New York
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Boosting • bootstrap aggregating • cluster analysis • Clustering • Data Analysis • Data Mining • Factor Analysis • Latent variable model • linear discriminant analysis • machine learning • Mathematica • Multidimensional Scaling • Projection Pursuit • random forest • Support Vector Machine
ISBN-10 1-4939-3832-0 / 1493938320
ISBN-13 978-1-4939-3832-2 / 9781493938322
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90