Stable Non-Gaussian Self-Similar Processes with Stationary Increments (eBook)

eBook Download: PDF
2017 | 1st ed. 2017
XIII, 135 Seiten
Springer International Publishing (Verlag)
978-3-319-62331-3 (ISBN)

Lese- und Medienproben

Stable Non-Gaussian Self-Similar Processes with Stationary Increments - Vladas Pipiras, Murad S. Taqqu
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book provides a self-contained presentation on the structure of a large class of stable processes, known as self-similar mixed moving averages.  The authors present a way to describe and classify these processes by relating them to so-called deterministic flows.  The first sections in the book review random variables, stochastic processes, and integrals, moving on to rigidity and flows, and finally ending with mixed moving averages and self-similarity.  In-depth appendices are also included.

This book is aimed at graduate students and researchers working in probability theory and statistics.



Vladas Pipiras is Professor of Statistics and Operations Research at the University of North Carolina, Chapel Hill. His main research interests focus on stochastic processes exhibiting long-range dependence, self-similarity and other scaling phenomena, as well as on stable, extreme-value and other distributions possessing heavy tails. His other current interests include high-dimensional time series, sampling issues for 'big data' and stochastic dynamical systems, with applications in Econometrics, Neuroscience, Engineering, Computer Science and other areas. Vladas Pipiras has written over 50 research papers, and is a coauthor of a graduate textbook on measure theory and probability.

Murad S. Taqqu's  research involves self-similar processes, their connection to time series with long-range dependence , the development of statistical tests, and the study of non-Gaussian processes whose marginal distributions have heavy tails.  He has written more than 250 scientific papers and is the coauthor of a standard reference on stable non-Gaussian random processes. Professor Taqqu is a Fellow of the Institute of Mathematical Statistics and has been elected Member of the International Statistical Institute.  He has received a number of awards, including a John Simon Guggenheim Fellowship, the 1995 William J. Bennett Award, the 1996 IEEE W.R.G. Baker Prize, the 2002 EURASIO Best Paper Award and the  2006 ACM/SIGCOMM Test of Time Award. 


Vladas Pipiras is Professor of Statistics and Operations Research at the University of North Carolina, Chapel Hill. His main research interests focus on stochastic processes exhibiting long-range dependence, self-similarity and other scaling phenomena, as well as on stable, extreme-value and other distributions possessing heavy tails. His other current interests include high-dimensional time series, sampling issues for “big data” and stochastic dynamical systems, with applications in Econometrics, Neuroscience, Engineering, Computer Science and other areas. Vladas Pipiras has written over 50 research papers, and is a coauthor of a graduate textbook on measure theory and probability. Murad S. Taqqu’s  research involves self-similar processes, their connection to time series with long-range dependence , the development of statistical tests, and the study of non-Gaussian processes whose marginal distributions have heavy tails.  He has written more than 250 scientific papers and is the coauthor of a standard reference on stable non-Gaussian random processes. Professor Taqqu is a Fellow of the Institute of Mathematical Statistics and has been elected Member of the International Statistical Institute.  He has received a number of awards, including a John Simon Guggenheim Fellowship, the 1995 William J. Bennett Award, the 1996 IEEE W.R.G. Baker Prize, the 2002 EURASIO Best Paper Award and the  2006 ACM/SIGCOMM Test of Time Award. 

Preliminaries.- Minimality, Rigidity, and Flows.- Mixed Moving Averages and Self-similarity.- A. Historical Notes.- B. Standard Lebesgue Spaces and Projections.- C. Notation Summary.

Erscheint lt. Verlag 31.8.2017
Reihe/Serie SpringerBriefs in Probability and Mathematical Statistics
SpringerBriefs in Probability and Mathematical Statistics
Zusatzinfo XIII, 135 p. 2 illus.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte isometries • Minimality • Mixed Moving Averages • Non-singular Flows and their Functionals • rigidity • Self-similarity • Stationarity of Increments • Symmetric Stable Processes
ISBN-10 3-319-62331-1 / 3319623311
ISBN-13 978-3-319-62331-3 / 9783319623313
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich