Quantifying Uncertainty in Subsurface Systems -

Quantifying Uncertainty in Subsurface Systems

Buch | Hardcover
304 Seiten
2018
American Geophysical Union (Verlag)
978-1-119-32583-3 (ISBN)
191,48 inkl. MwSt
Under the Earth's surface is a rich array of geological resources, many with potential use to humankind. However, extracting and harnessing them comes with enormous uncertainties, high costs, and considerable risks. The valuation of subsurface resources involves assessing discordant factors to produce a decision model that is functional and sustainable. This volume provides real-world examples relating to oilfields, geothermal systems, contaminated sites, and aquifer recharge.

Volume highlights include:



A multi-disciplinary treatment of uncertainty quantification
Case studies with actual data that will appeal to methodology developers
A Bayesian evidential learning framework that reduces computation and modeling time

Quantifying Uncertainty in Subsurface Systems is a multidisciplinary volume that brings together five major fields: information science, decision science, geosciences, data science and computer science. It will appeal to both students and practitioners, and be a valuable resource for geoscientists, engineers and applied mathematicians.

Read the Editors' Vox: eos.org/editors-vox/quantifying-uncertainty-about-earths-resources

Céline Scheidt is senior research engineer at Stanford University with 10 years of experience in this field. She is known for her work on uncertainty quantification using machine learning methods and has published several impactful papers in that area. She will be the keynote speaker of the next international Geostatistics congress. Lewis Li is 3rd year PhD student at Stanford University. He has published three papers, with three more in the pipeline. With an Electrical Engineering degree from Stanford University, he has considerable expertise in software engineering and in addressing computational challenges. Jef Caers is a world-leading expert in quantifying uncertainty in the subsurface, has closely worked on 100+ projects with a variety of industries in this area and has been leading the Stanford Center for Reservoir Forecasting for 15 years, he has been Professor at Stanford University for 19 years.

Preface vii

Authors xi

1. The Earth Resources Challenge 1

2. Decision Making Under Uncertainty 29

3. Data Science for Uncertainty Quantification 45

4. Sensitivity Analysis 107

5. Bayesianism 129

6. Geological Priors and Inversion 155

7. Bayesian Evidential Learning 193

8. Quantifying Uncertainty in Subsurface Systems 217

9. Software and Implementation 263

10. Outlook 267

Index 273

Erscheinungsdatum
Reihe/Serie Geophysical Monograph Series
Sprache englisch
Maße 216 x 277 mm
Gewicht 1134 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Geowissenschaften Geologie
Technik Bauwesen
Technik Bergbau
ISBN-10 1-119-32583-8 / 1119325838
ISBN-13 978-1-119-32583-3 / 9781119325833
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95
Elastostatik

von Dietmar Gross; Werner Hauger; Jörg Schröder …

Buch | Softcover (2024)
Springer Vieweg (Verlag)
33,36