Elements of Nonlinear Time Series Analysis and Forecasting (eBook)

eBook Download: PDF
2017 | 1st ed. 2017
XXI, 618 Seiten
Springer International Publishing (Verlag)
978-3-319-43252-6 (ISBN)

Lese- und Medienproben

Elements of Nonlinear Time Series Analysis and Forecasting - Jan G. De Gooijer
Systemvoraussetzungen
181,89 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a 'theorem-proof' format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods.

The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods.

To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.

 



Jan G. De Gooijer is Emeritus Professor of Economic Statistics at the University of Amsterdam. He completed an M.Sc. degree in mathematical statistics at Delft Technical University and a Ph.D. in economics at the Vrije Universiteit ('Free University') Amsterdam. He has (co-)authored over 100 publications on forecasting, time series analysis, econometrics, and statistics. Jan has been Associate Editor, Editor and Editor-in-Chief of The International Journal of Forecasting, Associate Editor of the Journal of Forecasting, and he has served on the editorial board of Empirical Economics. He is an elected member of the International Statistical Institute, and an Honorary Fellow of the International Institute of Forecasters. He has held visiting professor positions at the Universities of Umeå (Sweden), British Columbia (Canada) and Montpellier II (France), as well as Royal Holloway College (London, UK).  

Jan G. De Gooijer is Emeritus Professor of Economic Statistics at the University of Amsterdam. He completed an M.Sc. degree in mathematical statistics at Delft Technical University and a Ph.D. in economics at the Vrije Universiteit (“Free University”) Amsterdam. He has (co-)authored over 100 publications on forecasting, time series analysis, econometrics, and statistics. Jan has been Associate Editor, Editor and Editor-in-Chief of The International Journal of Forecasting, Associate Editor of the Journal of Forecasting, and he has served on the editorial board of Empirical Economics. He is an elected member of the International Statistical Institute, and an Honorary Fellow of the International Institute of Forecasters. He has held visiting professor positions at the Universities of Umeå (Sweden), British Columbia (Canada) and Montpellier II (France), as well as Royal Holloway College (London, UK).  

 

Erscheint lt. Verlag 30.3.2017
Reihe/Serie Springer Series in Statistics
Springer Series in Statistics
Zusatzinfo XXI, 618 p. 95 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Medizin / Pharmazie Allgemeines / Lexika
Naturwissenschaften Physik / Astronomie
Technik
Wirtschaft
Schlagworte AR-GARCH model • ARMA model • frequency domain tests • high dimensional tests • Model Selection • nonlinear time series • nonparametric forecasting • tests for serial independence • time-domain linearity test
ISBN-10 3-319-43252-4 / 3319432524
ISBN-13 978-3-319-43252-6 / 9783319432526
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 14,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quellen der Erkenntnis oder digitale Orakel?

von Bernd Simeon

eBook Download (2023)
Springer Berlin Heidelberg (Verlag)
16,99
Klartext für Nichtmathematiker

von Guido Walz

eBook Download (2021)
Springer Fachmedien Wiesbaden (Verlag)
4,48