Algebraic Groups
Cambridge University Press (Verlag)
978-1-107-16748-3 (ISBN)
J. S. Milne is Professor Emeritus at the University of Michigan, Ann Arbor. His previous books include Etale Cohomology (1980) and Arithmetic Duality Theorems (2006).
Introduction; 1. Definitions and basic properties; 2. Examples and basic constructions; 3. Affine algebraic groups and Hopf algebras; 4. Linear representations of algebraic groups; 5. Group theory: the isomorphism theorems; 6. Subnormal series: solvable and nilpotent algebraic groups; 7. Algebraic groups acting on schemes; 8. The structure of general algebraic groups; 9. Tannaka duality: Jordan decompositions; 10. The Lie algebra of an algebraic group; 11. Finite group schemes; 12. Groups of multiplicative type: linearly reductive groups; 13. Tori acting on schemes; 14. Unipotent algebraic groups; 15. Cohomology and extensions; 16. The structure of solvable algebraic groups; 17. Borel subgroups and applications; 18. The geometry of algebraic groups; 19. Semisimple and reductive groups; 20. Algebraic groups of semisimple rank one; 21. Split reductive groups; 22. Representations of reductive groups; 23. The isogeny and existence theorems; 24. Construction of the semisimple groups; 25. Additional topics; Appendix A. Review of algebraic geometry; Appendix B. Existence of quotients of algebraic groups; Appendix C. Root data; Bibliography; Index.
Erscheinungsdatum | 28.09.2017 |
---|---|
Reihe/Serie | Cambridge Studies in Advanced Mathematics |
Zusatzinfo | Worked examples or Exercises; 3 Halftones, black and white; 2 Line drawings, black and white |
Verlagsort | Cambridge |
Sprache | englisch |
Maße | 160 x 233 mm |
Gewicht | 1050 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
ISBN-10 | 1-107-16748-5 / 1107167485 |
ISBN-13 | 978-1-107-16748-3 / 9781107167483 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich