Machine Learning in Medicine - Ton J. Cleophas, Aeilko H. Zwinderman

Machine Learning in Medicine

Part Three
Buch | Softcover
224 Seiten
2017 | Softcover reprint of the original 1st ed. 2013
Springer (Verlag)
978-94-024-0260-5 (ISBN)
53,49 inkl. MwSt
Offering sequenced guidance for non-specialists on how to reap the benefits of machine learning in medicine and healthcare, this text harnesses the power of cutting-edge computing to maximize the accessibility and analytic value of stored data and records.
Machine learning is concerned with the analysis of large data and multiple variables. It is also often more sensitive than traditional statistical methods to analyze small data. The first and second volumes reviewed subjects like optimal scaling, neural networks, factor analysis, partial least squares, discriminant analysis, canonical analysis, fuzzy modeling, various clustering models, support vector machines, Bayesian networks, discrete wavelet analysis, association rule learning, anomaly detection, and correspondence analysis. This third volume addresses more advanced methods and includes subjects like evolutionary programming, stochastic methods, complex sampling, optional binning, Newton's methods, decision trees, and other subjects. Both the theoretical bases and the step by step analyses are described for the benefit of non-mathematical readers. Each chapter can be studied without the need to consult other chapters. Traditional statistical tests are, sometimes, priors to machine learning methods, and they are also, sometimes, used as contrast tests. To those wishing to obtain more knowledge of them, we recommend to additionally study (1) Statistics Applied to Clinical Studies 5th Edition 2012, (2) SPSS for Starters Part One and Two 2012, and (3) Statistical Analysis of Clinical Data on a Pocket Calculator Part One and Two 2012, written by the same authors, and edited by Springer, New York.

Preface.- Introduction to Machine Learning Part Three.- Evolutionary Operations.- Multiple Treatments.- Multiple Endpoints.- Optimal Binning.- Exact P-Values.- Probit Regression.- Over - dispersion.10 Random Effects.- Weighted Least Squares.- Multiple Response Sets.- Complex Samples.- Runs Tests.- Decision Trees.- Spectral Plots.- Newton's Methods.- Stochastic Processes, Stationary Markov Chains.- Stochastic Processes, Absorbing Markov Chains.- Conjoint Models.- Machine Learning and Unsolved Questions.- Index.

Erscheinungsdatum
Zusatzinfo 41 Illustrations, black and white; XIX, 224 p. 41 illus.
Verlagsort Dordrecht
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik
Medizin / Pharmazie Allgemeines / Lexika
Medizin / Pharmazie Studium
ISBN-10 94-024-0260-8 / 9402402608
ISBN-13 978-94-024-0260-5 / 9789402402605
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
alles zum Drucken, Scannen, Modellieren

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2024)
Markt + Technik Verlag
24,95
Einstieg und Praxis

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2023)
Markt + Technik (Verlag)
19,95