Handbook of Structural Equation Modeling (eBook)
740 Seiten
Guilford Publications (Verlag)
978-1-4625-0446-6 (ISBN)
Rick H. Hoyle is Professor of Psychology and Neuroscience at Duke University, where he serves as Associate Director of the Center for Child and Family Policy and Director of the Methodology and Statistics Core in the Transdisciplinary Prevention Research Center. He is a Fellow of the Association for Psychological Science, the American Psychological Association, and the Society of Experimental Social Psychology. He has written extensively on SEM and other statistical and methodological strategies for the study of complex social and behavioral processes.
I. Background1. Introduction and Overview, Rick H. Hoyle2. Key Advances in the History of Structural Equation Modeling, Ross L. Matsueda3. Graphical Representation of Structural Equation Models Using Path Diagrams, Moon-ho Ringo Ho, Stephen Stark, and Olexander Chernyshenko4. Latent Variables in Structural Equation Modeling, Kenneth A. Bollen and Rick H. Hoyle5. The Causal Foundations of Structural Equation Modeling, Judea Pearl6. Simulation Methods in Structural Equation Modeling, Deborah L. Bandalos and Phillip GagnéII. Fundamentals7. Assumptions in Structural Equation Modeling, Rex B. Kline8. Model Specification in Structural Equation Modeling, Rick H. Hoyle9. Identification: A Nontechnical Discussion of a Technical Issue, David A. Kenny and Stephanie Milan10. Estimation in Structural Equation Modeling, Pui-Wa Lei and Qiong Wu11. Power Analysis for Tests of Structural Equation Models, Taehun Lee, Li Cai, and Robert C. MacCallum12. Categorical Data in the Structural Equation Modeling Framework, Michael C. Edwards, R. J. Wirth, Carrie R. Houts, and Nuo Xi13. Model Fit and Model Selection in Structural Equation Modeling, Stephen G. West, Aaron B. Taylor, and Wei Wu14. Model Modification in Structural Equation Modeling, Chih-Ping Chou and Jimi Huh15. Equivalent Models: Concepts, Problems, Alternatives, Larry J. WilliamsIII. Implementation16. Preparing Data for Structural Equation Modeling: Doing Your Homework, Patrick S. Malone and Jill B. Lubansky17. Structural Equation Modeling with Missing Data, John W. Graham and Donna L. Coffman18. Bootstrapping Standard Errors and Data–Model Fit Statistics in Structural Equation Modeling, Gregory R. Hancock and Min Liu19. Choosing Structural Equation Modeling Computer Software: Snapshots of LISREL, EQS, Amos, and Mplus, Barbara M. Byrne20. Structural Equation Modeling in R with the sem and OpenMx Packages, John Fox, Jarrett E. Byrnes, Steven Boker, and Michael C. Neale21. The Structural Equation Modeling Research Report, Anne Boomsma, Rick H. Hoyle, and A. T. PanterIV. Basic Applications22. Confirmatory Factor Analysis, Timothy A. Brown and Michael T. Moore23. Investigating Measurement Invariance Using Confirmatory Factor Analysis, Roger E. Millsap and Margarita Olivera-Aguilar24. A Flexible Structural Equation Modeling Approach for Analyzing Means, Samuel B. Green and Marilyn S. Thompson25. Mediation/Indirect Effects in Structural Equation Modeling, JeeWon Cheong and David P. MacKinnon26. Structural Equation Models of Latent Interaction, Herbert W. Marsh, Zhonglin Wen, Benjamin Nagengast, and Kit-Tai Hau27. Autoregressive Longitudinal Models, Jeremy C. Biesanz28. Scale Construction and Development Using Structural Equation Modeling, Tenko RaykovV. Advanced Applications29. Measurement Models for Ordered-Categorical Indicators, James A. Bovaird and Natalie A. Koziol30. Multilevel Structural Equation Modeling, Sophia Rabe-Hesketh, Anders Skrondal, and Xiaohui Zheng31. An Overview of Growth Mixture Modeling: A Simple Nonlinear Application in OpenMx, Mariya P. Shiyko, Nilam Ram, and Kevin J. Grimm32. Latent Curve Modeling of Longitudinal Growth Data, John J. McArdle33. Dynamic Factor Models for Longitudinally Intensive Data: Description and Estimation via Parallel Factor Models of Cholesky Decomposition, Phillip Wood34. Latent Trait–State Models, David A. Cole35. Longitudinal Structural Models for Assessing Dynamics in Dyadic Interactions, Emilio Ferrer and Hairong Song36. Structural Equation Modeling in Genetics, Sanja Franic, Conor V. Dolan, Denny Borsboom, and Dorret I. Boomsma37. Structural Equation Models of Imaging Data, Anthony R. McIntosh and Andrea B. Protzner38. Bayesian Structural Equation Modeling, David Kaplan and Sarah Depaoli39. Spatial Structural Equation Modeling, Melanie M. Wall40. Automated Structural Equation Modeling Strategies, George A. Marcoulides and Marsha Ing
Erscheint lt. Verlag | 8.6.2012 |
---|---|
Verlagsort | New York |
Sprache | englisch |
Maße | 190 x 190 mm |
Themenwelt | Geisteswissenschaften ► Psychologie |
Mathematik / Informatik ► Mathematik | |
ISBN-10 | 1-4625-0446-9 / 1462504469 |
ISBN-13 | 978-1-4625-0446-6 / 9781462504466 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich