Bifurcation in Autonomous and Nonautonomous Differential Equations with Discontinuities - Marat Akhmet, Ardak Kashkynbayev

Bifurcation in Autonomous and Nonautonomous Differential Equations with Discontinuities (eBook)

eBook Download: PDF
2017 | 1st ed. 2017
XI, 166 Seiten
Springer Singapore (Verlag)
978-981-10-3180-9 (ISBN)
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book focuses on bifurcation theory for autonomous and nonautonomous differential equations with discontinuities of different types - those with jumps present either in the right-hand side, or in trajectories or in the arguments of solutions of equations. The results obtained can be applied to various fields, such as neural networks, brain dynamics, mechanical systems, weather phenomena and population dynamics. Developing bifurcation theory for various types of differential equations, the book is pioneering in the field. It presents the latest results and provides a practical guide to applying the theory to differential equations with various types of discontinuity. Moreover, it offers new ways to analyze nonautonomous bifurcation scenarios in these equations. As such, it shows undergraduate and graduate students how bifurcation theory can be developed not only for discrete and continuous systems, but also for those that combine these systems in very different ways. At the same time, it offers specialists several powerful instruments developed for the theory of discontinuous dynamical systems with variable moments of impact, differential equations with piecewise constant arguments of generalized type and Filippov systems.



1) Prof. Dr. Marat Akhmet is a member of the Department of Mathematics, Middle East Technical University, Turkey. He is a specialist in dynamical  models, bifurcation theory, chaos theory and differential equations. He has spent several years investigating the dynamics of neural networks, economic models and mechanical systems. He has published 4 books on different topics of dynamical systems.

2)  Dr. Ardak Kashkynbayev obtained his PhD from the Department of Mathematics, Middle East Technical University, Turkey. His research focuses on differential equations, bifurcation theory, chaos theory and applications to mechanical systems.

 


This book focuses on bifurcation theory for autonomous and nonautonomous differential equations with discontinuities of different types - those with jumps present either in the right-hand side, or in trajectories or in the arguments of solutions of equations. The results obtained can be applied to various fields, such as neural networks, brain dynamics, mechanical systems, weather phenomena and population dynamics. Developing bifurcation theory for various types of differential equations, the book is pioneering in the field. It presents the latest results and provides a practical guide to applying the theory to differential equations with various types of discontinuity. Moreover, it offers new ways to analyze nonautonomous bifurcation scenarios in these equations. As such, it shows undergraduate and graduate students how bifurcation theory can be developed not only for discrete and continuous systems, but also for those that combine these systems in very different ways. At the same time, it offers specialists several powerful instruments developed for the theory of discontinuous dynamical systems with variable moments of impact, differential equations with piecewise constant arguments of generalized type and Filippov systems.

1) Prof. Dr. Marat Akhmet is a member of the Department of Mathematics, Middle East Technical University, Turkey. He is a specialist in dynamical  models, bifurcation theory, chaos theory and differential equations. He has spent several years investigating the dynamics of neural networks, economic models and mechanical systems. He has published 4 books on different topics of dynamical systems. 2)  Dr. Ardak Kashkynbayev obtained his PhD from the Department of Mathematics, Middle East Technical University, Turkey. His research focuses on differential equations, bifurcation theory, chaos theory and applications to mechanical systems.  

Introduction.- Hopf Bifurcation in Impulsive Systems.- Hopf Bifurcation in Fillopov Systems.- Nonautonomous Transcritical and Pitchfork Bifurcations in an Impulsive Bernoulli Equations.- Nonautonomous Transcritical and Pitchfork Bifurcations in Scalar Non-solvable Impulsive Differential Equations.- Nonautonomous Transcritical and Pitchfork Bifurcations in Bernoulli Equations with Piecewise Constant Argument of Generalized Type.

Erscheint lt. Verlag 23.1.2017
Reihe/Serie Nonlinear Physical Science
Nonlinear Physical Science
Zusatzinfo XI, 166 p. 31 illus., 26 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Geometrie / Topologie
Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Schlagworte Center manifold theory • Discontinuous dynamical systems • Discontinuous Right-Hand Side • Hopf Bifurcation • Impulsive systems • Nonautonomous bifurcation • Ordinary differential equations • piecewise constant argument
ISBN-10 981-10-3180-0 / 9811031800
ISBN-13 978-981-10-3180-9 / 9789811031809
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover tactics to decrease churn and expand revenue

von Jeff Mar; Peter Armaly

eBook Download (2024)
Packt Publishing (Verlag)
25,19