Environmental Data Analysis (eBook)
334 Seiten
De Gruyter (Verlag)
978-3-11-042498-0 (ISBN)
The book introduces frequently-used mathematical methods, such as time series analysis, statistical methods, approximations, and optimization in analyzing environmental data and demonstrates their application in various case studies. Designed as a practical guide, it suits mathematicians who try to find the way into environmental science, and environmental scientists who struggle to conduct data analysis.
Zhihua Zhang, Beijing Normal University, Beijing, China.
lt;P>Zhihua Zhang, Beijing Normal University, Beijing, China.
Table of content:
Preface
Chapter 1. Time Series Analysis
1.1. State Estimation
1.2. Power Spectrum
1.3. Optimal Filtering
1.4. State Space Models
1.5. Information Theory
1.6. Complex Networks
Chapter 2. Dynamical Systems
2.1. State-Space Reconstruction
2.2. Determinism and Predictability
2.3. Embedding Methods
2.4. Lyapunov Exponents
2.5. Modelling and Forecasting
2.6. Chaos and nonlinear noise reduction
Chapter 3. Approximation
3.1. Trigonometric Approximation
3.2. Polynomial Approximation
3.3. Spline Approximation
3.4. Rational Approximation
3.5. Wavelet Approximation
3.6. Multivariate Approximation
3.7. Dimensionality reduction
3.8. Adaptive Basis Selection and Greedy Algorithm
Chapter 4. Interpolation
4.1. Curve Fitting
4.2. Lagrange Interpolation
4.3. Hermite Interpolation
4.4. Spline Interpolation
4.5. Case Studies
Chapter 5. Satistical Methods
5.1. Linear Regression
5.2. Logistic Regression
5.3. Multiple Regression
5.4. Analysis of Covariance
5.5. Cluster Analysis
5.6. Discriminant Analysis.
5.7. Principal Component Analysis
5.8. Factor Analysis
5.9. SPSS software
Chapter 6. Numerical Methods
6.1. Numerical Integration
6.2. Numerical Differentiation
6.3. Direct and Iterative Methods
6.4. Finite Difference Methods.
6.5. Finite Element Methods.
6.6. Finite Volume Methods
6.7. Wavelet Methods
Chapter 7. Optimization
7.1. Steepest Descent and Newton methods
7.2. Linear optimization
7.3. Lagrange multipliers
7.4. Karush-Kuhn-Tucker conditions
7.5. Primal-dual interior-point method
7.6. The simplex method
7.7. Stochastic optimization
Chapter 8. Risk Assessments
Chapter 9. Life Cycle Assessments
Erscheint lt. Verlag | 21.11.2017 |
---|---|
Verlagsort | Berlin/Boston |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Technik | |
Schlagworte | Data Analysis • Datenanalyse • Environmental Science • Mathematics • Mathematik • Umweltwissenschaft |
ISBN-10 | 3-11-042498-3 / 3110424983 |
ISBN-13 | 978-3-11-042498-0 / 9783110424980 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich