The Manual of Strategic Economic Decision Making (eBook)

Using Bayesian Belief Networks to Solve Complex Problems

(Autor)

eBook Download: PDF
2016 | 1st ed. 2016
XXVIII, 260 Seiten
Springer International Publishing (Verlag)
978-3-319-48414-3 (ISBN)

Lese- und Medienproben

The Manual of Strategic Economic Decision Making - Jeff Grover
Systemvoraussetzungen
80,24 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book is an extension of the author's first book and serves as a guide and manual on how to specify and compute 2-, 3-, and 4-Event Bayesian Belief Networks (BBN). It walks the learner through the steps of fitting and solving fifty BBN numerically, using mathematical proof. The author wrote this book primarily for inexperienced learners as well as professionals, while maintaining a proof-based academic rigor.

The author's first book on this topic, a primer introducing learners to the basic complexities and nuances associated with learning Bayes' theorem and inverse probability for the first time, was meant for non-statisticians unfamiliar with the theorem-as is this book. This new book expands upon that approach and is meant to be a prescriptive guide for building BBN and executive decision-making for students and professionals; intended so that decision-makers can invest their time and start using this inductive reasoning principle in their decision-making processes. It highlights the utility of an algorithm that served as the basis for the first book, and includes fifty 2-, 3-, and 4-event BBN of numerous variants.




Jeff Grover, PhD, is Founder and Chief Research Scientist at Grover Group, Inc., where he specializes in Bayes' Theorem and its application to strategic economic decision making through Bayesian Belief Networks (BBN). He specializes in blending economic theory and BBN to maximize stakeholder wealth. He is a winner of the Kentucky Innovation Award (2015) for the application of his proprietary BBN big data algorithm. He has operationalized BBN in the healthcare industry, evaluating the Medicare 'Hospital Compare' data; in the Department of Defense, conducting research with U.S. Army Recruiting Command to determine optimal levels of required recruiters for recruiting niche market medical professionals; and in the agriculture industry in optimal soybean selection. In the area of economics, he was recently contracted by the Department of Energy, The Alliance for Sustainable Energy, LLC Management and Operating Contractor for the National Renewable Energy Laboratory, to conduct a 3rd party evaluation of the Hydrogen Financial Analysis Scenario (H2FAST) Tool.

Jeff Grover, Doctor of Business Administration (DBA) (Finance), is Founder and Chief Research Scientist at Grover Group, Inc., where he specializes in Bayes’ Theorem and its application to strategic economic decision making through Bayesian Belief Networks (BBN). He specializes in blending economic theory and BBN to maximize stakeholder wealth. He is a winner of the Kentucky Innovation Award (2015) for the application of his proprietary BBN big data algorithm. He has operationalized BBN in the healthcare industry, evaluating the Medicare “Hospital Compare” data; in the Department of Defense, conducting research with U.S. Army Recruiting Command to determine optimal levels of required recruiters for recruiting niche market medical professionals; and in the agriculture industry in optimal soybean selection. In the area of economics, he was recently contracted by the Department of Energy, The Alliance for Sustainable Energy, LLC Management and Operating Contractor for the National Renewable Energy Laboratory, to conduct a 3rd party evaluation of the Hydrogen Financial Analysis Scenario (H2FAST) Tool.

1. Introduction1.1 Bayes' Theorem: An Introduction1.2 Protocol1.3 Data1.4 Statistical Properties of Bayes' Theorem1.5 Base Matrices1.5.1 Event A Node2. Base Matrices2.1 Event A Node2.1.1 Event A Node-Prior Counts2.1.2 Module A-Prior Probabilities2.2 Event B 2.2.1 Event B Node-Likelihood Counts2.2.2 Module B Node2.2.3 Event B Node-Counts2.2.4 Event B Node-Likelihood Probabilities2.3 Event C Node2.3.1 Event C Node-Counts2.3.2 Event C Node-Likelihood Probabilities2.3.3 Event C Node-Counts2.3.4 Event C Node-Likelihood Probabilities2.3.5 Event C Node-Counts2.3.6 Event C Node-Likelihood Probabilities 2.3.7 Event C Node-Counts2.3.8 Event C Node-Probabilities2.4 Event D Node2.4.1 Event D Node-Counts2.4.2 Event D Node-Likelihood Probabilities2.5 Event D Node-Counts2.5.1 Event D Node-Likelihood Probabilities2.5.2 Event D Node-Counts2.5.3 Event D Node-Likelihood Probabilities2.5.4 Event D Node-Counts2.5.5 Event D Node-Likelihood Probabilities2.5.6 Event D Node-Counts2.5.7 Event D Node-Likelihood Probabilities2.5.8 Event D Node-Counts2.5.9 Event D Node-Likelihood Probabilities2.5.10 Event D Node-Counts2.5.11 Event D Node-Likelihood Probabilities3. 2-Event 1-Path BBN3.1 [A] [B]3.1.1 2-Event BBN Proof3.1.2 BBN Specification4.3-Event 2-Path BBNs4.1 [AB|AC]4.1.1 Proof4.1.2 BBN Specification4.2 [AC|BC]4.2.1 Proof4.2.2 BBN Specification 4.3 [AB|BC]4.3.1 Proof4.3.2 BBN Specification 5. 3-Event 3-Path BBNs5.1 3-Paths-[AB|AC|BC]5.1.1 Proof5.1.2 BBN Probabilities

Erscheint lt. Verlag 29.11.2016
Zusatzinfo XXVIII, 260 p. 55 illus., 51 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Wirtschaft Betriebswirtschaft / Management Planung / Organisation
Wirtschaft Betriebswirtschaft / Management Unternehmensführung / Management
Schlagworte algorithm • Bayesian • Bayesian Belief Networks • Bayes' Theorem • BBN • Decision Theory • discrete math • executive decision-making • Inductive Logic • machine learning • strategic economic decision making
ISBN-10 3-319-48414-1 / 3319484141
ISBN-13 978-3-319-48414-3 / 9783319484143
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quellen der Erkenntnis oder digitale Orakel?

von Bernd Simeon

eBook Download (2023)
Springer Berlin Heidelberg (Verlag)
16,99
Klartext für Nichtmathematiker

von Guido Walz

eBook Download (2021)
Springer Fachmedien Wiesbaden (Verlag)
4,48