Beginning Data Science in R
Seiten
2017
Apress (Verlag)
978-1-4842-2670-4 (ISBN)
Apress (Verlag)
978-1-4842-2670-4 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
Zu diesem Artikel existiert eine Nachauflage
- Gives you everything you need to know to get started in data science and R programming
- A unique book by a data science expert
- Based on a successful lecture series
Discover best practices for data analysis and software development in R and start on the path to becoming a fully-fledged data scientist.
This book teaches you techniques for both data manipulation and visualization and shows you the best way for developing new software packages for R.
Beginning Data Science in R details how data science is a combination of statistics, computational science, and machine learning. You’ll see how to efficiently structure and mine data to extract useful patterns and build mathematical models. This requires computational methods and programming, and R is an ideal programming language for this.
This book is based on a number of lecture notes for classes the author has taught on data science and statistical programming using the R programming language. Modern data analysis requires computational skills and usually a minimum of programming.
You will learn how to
- Perform data science and analytics using statistics and the R programming language
- Visualize and explore data, including working with large data sets found in big data
- Build an R package
- Test and check your code
- Practice version control
- Profile and optimize your code
Thomas Mailund is an associate professor in bioinformatics at Aarhus University, Denmark. His background is in math and computer science but for the last decade his main focus has been on genetics and evolutionary studies, particularly comparative genomics, speciation, and gene flow between emerging species.
1. Introduction to R programming. 2. Reproducible analysis. 3. Data manipulation. 4. Visualizing and exploring data. 5. Working with large data sets.6. Supervised learning. 7. Unsupervised learning. 8. More R programming.9. Advanced R programming.10. Object oriented programming.11. Building an R package.12. Testing and checking. 13. Version control. 14. Profiling and optimizing.
Erscheinungsdatum | 22.03.2017 |
---|---|
Zusatzinfo | 100 black & white illustrations, biography |
Verlagsort | Berkley |
Sprache | englisch |
Maße | 178 x 254 mm |
Gewicht | 728 g |
Einbandart | kartoniert |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Mathematik / Informatik ► Informatik ► Netzwerke | |
Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge | |
Informatik ► Theorie / Studium ► Compilerbau | |
ISBN-10 | 1-4842-2670-4 / 1484226704 |
ISBN-13 | 978-1-4842-2670-4 / 9781484226704 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Datenanalyse für Künstliche Intelligenz
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95 €
Auswertung von Daten mit pandas, NumPy und IPython
Buch | Softcover (2023)
O'Reilly (Verlag)
44,90 €