Deterministic Chaos in Infinite Quantum Systems

(Autor)

Buch | Softcover
VI, 225 Seiten
1993 | 1. Softcover reprint of the original 1st ed. 1993
Springer Berlin (Verlag)
978-3-540-57017-2 (ISBN)

Lese- und Medienproben

Deterministic Chaos in Infinite Quantum Systems - Fabio Benatti
106,99 inkl. MwSt
The purpose of this volume is to give a detailed account of a series of re sults concerning some ergodic questions of quantum mechanics which have the past six years following the formulation of a generalized been addressed in Kolmogorov-Sinai entropy by A.Connes, H.Narnhofer and W.Thirring. Classical ergodicity and mixing are fully developed topics of mathematical physics dealing with the lowest levels in a hierarchy of increasingly random behaviours with the so-called Bernoulli systems at its apex showing a structure that characterizes them as Kolmogorov (K-) systems. It seems not only reasonable, but also inevitable to use classical ergodic theory as a guide in the study of ergodic behaviours of quantum systems. The question is which kind of random behaviours quantum systems can exhibit and whether there is any way of classifying them. Asymptotic statistical independence and, correspondingly, complete lack of control over the distant future are typical features of classical K-systems. These properties are fully characterized by the dynamical entropy of Kolmogorov and Sinai, so that the introduction of a similar concept for quantum systems has provided the opportunity of raising meaningful questions and of proposing some non-trivial answers to them. Since in the following we shall be mainly concerned with infinite quantum systems, the algebraic approach to quantum theory will provide us with the necessary analytical tools which can be used in the commutative context, too.

The author presents the classical concept of Kolmogorov-Sinai entropy and its non-commutative analogue for infinite quantum systems. He then compares the irregular behaviour of classical versus quantum systems. These notes address both researchers and graduate students in statistical mechanics and mathematical physics.

1 Introduction.- 2 Classical Ergodic Theory.- 2.1 Irreversibility.- 2.2 Entropy.- 2.3 Topological Properties of Dynamical Systems.- 3 Algebraic Approach to Classical Ergodic Theory.- 3.1 Abelian C* Dynamical Systems.- 3.2 Abelian W* Dynamical Systems.- 3.3 W* Algebras: KS-Entropy and K-Systems.- 3.4 C* Algebras: Classical Topological Entropy.- 4 Infinite Quantum Systems.- 4.1 Useful Tools from Finite Quantum Systems.- 4.2 GNS-Construction.- 4.3 Ergodic Properties in Quantum Systems.- 4.4 Algebraic Quantum Kolmogorov Systems.- 5 Connes-Narnhofer-Thirring Entropy.- 5.1 Basic Ideas and Construction 1.- 5.2 Basic Ideas and Construction 2.- 5.3 CNT-Entropy: Applications.- 5.4 Short History of the Topic and Latest Developments.- 5.5 Entropic Quantum Kolmogorov Systems.- 5.6 Ideas for a Non-commutative Topological Entropy.- 6 Appendix.- References.- Index of Symbols.

Erscheint lt. Verlag 3.11.1993
Reihe/Serie Trieste Notes in Physics
Zusatzinfo VI, 225 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 358 g
Themenwelt Mathematik / Informatik Mathematik
Naturwissenschaften Physik / Astronomie Quantenphysik
Naturwissenschaften Physik / Astronomie Thermodynamik
Schlagworte Chaos • Deterministic Chaos • Entropie • Entropy • Ergodentheorie • ergodic theory • Infinite Quantum System • Quantum Chaos
ISBN-10 3-540-57017-9 / 3540570179
ISBN-13 978-3-540-57017-2 / 9783540570172
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlegende Vorstellungen und Begriffe

von Thomas Görnitz

Buch | Hardcover (2024)
Carl Hanser (Verlag)
44,99
Quantenmechanik

von Gerhard Franz

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
89,95