Stochastic Processes and Long Range Dependence (eBook)
XI, 415 Seiten
Springer-Verlag
978-3-319-45575-4 (ISBN)
This monograph is a gateway for researchers and graduate students to explore the profound, yet subtle, world of long-range dependence (also known as long memory). The text is organized around the probabilistic properties of stationary processes that are important for determining the presence or absence of long memory. The first few chapters serve as an overview of the general theory of stochastic processes which gives the reader sufficient background, language, and models for the subsequent discussion of long memory. The later chapters devoted to long memory begin with an introduction to the subject along with a brief history of its development, followed by a presentation of what is currently the best known approach, applicable to stationary processes with a finite second moment. The book concludes with a chapter devoted to the author's own, less standard, point of view of long memory as a phase transition, and even includes some novel results.
Most of the material in the book has not previously been published in a single self-contained volume, and can be used for a one- or two-semester graduate topics course. It is complete with helpful exercises and an appendix which describes a number of notions and results belonging to the topics used frequently throughout the book, such as topological groups and an overview of the Karamata theorems on regularly varying functions.
Gennady Samorodnitsky is a Professor in the School of Operations Research and Information Engineering at Cornell University. His interest lies both in probability theory and in its various applications.
Gennady Samorodnitsky is a Professor in the School of Operations Research and Information Engineering at Cornell University. His interest lies both in probability theory and in its various applications.
Preface.- Stationary Processes.- Ergodic Theory of Stationary Processes.- Infinitely Divisible Processes.- Heavy Tails.- Hurst Phenomenon.- Second-order Theory.- Fractionally Integrated Processes.- Self-similar Processes.- Long Range Dependence as a Phase Transition.- Appendix.
Erscheint lt. Verlag | 9.11.2016 |
---|---|
Reihe/Serie | Springer Series in Operations Research and Financial Engineering | Springer Series in Operations Research and Financial Engineering |
Zusatzinfo | XI, 415 p. 5 illus. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | ergodic theory • heavy tails • long range dependence • Second-order Theory • Stochastic Processes |
ISBN-10 | 3-319-45575-3 / 3319455753 |
ISBN-13 | 978-3-319-45575-4 / 9783319455754 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 4,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich