Descriptive Set Theory and Forcing

How to prove theorems about Borel sets the hard way

(Autor)

Buch | Softcover
IV, 133 Seiten
1995 | 1995
Springer Berlin (Verlag)
978-3-540-60059-6 (ISBN)

Lese- und Medienproben

Descriptive Set Theory and Forcing - Arnold Miller
85,59 inkl. MwSt
An advanced graduate course. Some knowledge of forcing is assumed, and some elementary Mathematical Logic, e.g. the Lowenheim-Skolem Theorem. A student with one semester of mathematical logic and 1 of set theory should be prepared to read these notes. The first half deals with the general area of Borel hierarchies. What are the possible lengths of a Borel hierarchy in a separable metric space? Lebesgue showed that in an uncountable complete separable metric space the Borel hierarchy has uncountably many distinct levels, but for incomplete spaces the answer is independent. The second half includes Harrington's Theorem - it is consistent to have sets on the second level of the projective hierarchy of arbitrary size less than the continuum and a proof and appl- ications of Louveau's Theorem on hyperprojective parameters.

1 What are the reals, anyway?.- I On the length of Borel hierarchies.- 2 Borel Hierarchy.- 3 Abstract Borel hierarchies.- 4 Characteristic function of a sequence.- 5 Martin's Axiom.- 6 Generic G?.- 7 ?-forcing.- 8 Boolean algebras.- 9 Borel order of a field of sets.- 10 CH and orders of separable metric spaces.- 11 Martin-Solovay Theorem.- 12 Boolean algebra of order ?1.- 13 Luzin sets.- 14 Cohen real model.- 15 The random real model.- 16 Covering number of an ideal.- II Analytic sets.- 17 Analytic sets.- 18 Constructible well-orderings.- 19 Hereditarily countable sets.- 20 Shoenfield Absoluteness.- 21 Mansfield-Solovay Theorem.- 22 Uniformity and Scales.- 23 Martin's axiom and Constructibility.- 24 % MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm% Wu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9% q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir% -Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGa% aeqabaWaaeaaeaaakeaacqGHris5daqhaaWcbaGaeGOmaidabaGaeG% ymaedaaaaa!3322!$$sum _2^1$$ well-orderings.- 25 Large % MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm% Wu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9% q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir% -Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGa% aeqabaWaaeaaeaaakeaacqGHpis1daqhaaWcbaGaeGOmaidabaGaeG% ymaedaaaaa!3310!$$prod _2^1$$ sets.- III Classical Separation Theorems.- 26 Souslin-Luzin Separation Theorem.- 27 Kleene Separation Theorem.- 28 % MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm% Wu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9% q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir% -Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGa%aeqabaWaaeaaeaaakeaacqGHpis1daqhaaWcbaGaeGymaedabaGaeG% ymaedaaaaa!330E!$$prod _1^1$$-Reduction.- 29 % MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm% Wu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9% q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir% -Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGa% aeqabaWaaeaaeaaakeaacqGHuoardaqhaaWcbaGaeGymaedabaGaeG% ymaedaaaaa!32E3!$$Delta _1^1$$-codes.- IV Gandy Forcing.- 30 % MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm% Wu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9% q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir% -Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGa% aeqabaWaaeaaeaaakeaacqGHpis1daqhaaWcbaGaeGymaedabaGaeG% ymaedaaaaa!330E!$$prod _1^1$$ equivalence relations.- 31 Borel metric spaces and lines in the plane.- 32 % MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm% Wu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9% q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir% -Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGa% aeqabaWaaeaaeaaakeaacqGHris5daqhaaWcbaGaeGymaedabaGaeG% ymaedaaaaa!3320!$$sum _1^1$$ equivalence relations.- 33 Louveau's Theorem.- 34 Proof of Louveau's Theorem.- References.- Elephant Sandwiches.

"Miller includes interesting historical material and references. His taste for slick, elegant proofs makes the book pleasant to read. The author makes good use of his sense of humor...Most readers will enjoy the comments, footnotes, and jokes scattered throughout the book." Studia Logica

"Miller includes interesting historical material and references. His taste for slick, elegant proofs makes the book pleasant to read. The author makes good use of his sense of humor...Most readers will enjoy the comments, footnotes, and jokes scattered throughout the book." Studia Logica

Erscheint lt. Verlag 18.9.1995
Reihe/Serie Lecture Notes in Logic
Zusatzinfo IV, 133 p. 1 illus.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 224 g
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Logik / Mengenlehre
Schlagworte Algebra • forcing • Function • Logic • Mathematica • Mathematical Logic • Proof • set theory • Theorem • well-ordering principle
ISBN-10 3-540-60059-0 / 3540600590
ISBN-13 978-3-540-60059-6 / 9783540600596
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich