Descriptive Set Theory and Forcing
Springer Berlin (Verlag)
978-3-540-60059-6 (ISBN)
1 What are the reals, anyway?.- I On the length of Borel hierarchies.- 2 Borel Hierarchy.- 3 Abstract Borel hierarchies.- 4 Characteristic function of a sequence.- 5 Martin's Axiom.- 6 Generic G?.- 7 ?-forcing.- 8 Boolean algebras.- 9 Borel order of a field of sets.- 10 CH and orders of separable metric spaces.- 11 Martin-Solovay Theorem.- 12 Boolean algebra of order ?1.- 13 Luzin sets.- 14 Cohen real model.- 15 The random real model.- 16 Covering number of an ideal.- II Analytic sets.- 17 Analytic sets.- 18 Constructible well-orderings.- 19 Hereditarily countable sets.- 20 Shoenfield Absoluteness.- 21 Mansfield-Solovay Theorem.- 22 Uniformity and Scales.- 23 Martin's axiom and Constructibility.- 24 % MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm% Wu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9% q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir% -Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGa% aeqabaWaaeaaeaaakeaacqGHris5daqhaaWcbaGaeGOmaidabaGaeG% ymaedaaaaa!3322!$$sum _2^1$$ well-orderings.- 25 Large % MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm% Wu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9% q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir% -Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGa% aeqabaWaaeaaeaaakeaacqGHpis1daqhaaWcbaGaeGOmaidabaGaeG% ymaedaaaaa!3310!$$prod _2^1$$ sets.- III Classical Separation Theorems.- 26 Souslin-Luzin Separation Theorem.- 27 Kleene Separation Theorem.- 28 % MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm% Wu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9% q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir% -Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGa%aeqabaWaaeaaeaaakeaacqGHpis1daqhaaWcbaGaeGymaedabaGaeG% ymaedaaaaa!330E!$$prod _1^1$$-Reduction.- 29 % MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm% Wu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9% q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir% -Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGa% aeqabaWaaeaaeaaakeaacqGHuoardaqhaaWcbaGaeGymaedabaGaeG% ymaedaaaaa!32E3!$$Delta _1^1$$-codes.- IV Gandy Forcing.- 30 % MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm% Wu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9% q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir% -Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGa% aeqabaWaaeaaeaaakeaacqGHpis1daqhaaWcbaGaeGymaedabaGaeG% ymaedaaaaa!330E!$$prod _1^1$$ equivalence relations.- 31 Borel metric spaces and lines in the plane.- 32 % MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm% Wu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9% q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir% -Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGa% aeqabaWaaeaaeaaakeaacqGHris5daqhaaWcbaGaeGymaedabaGaeG% ymaedaaaaa!3320!$$sum _1^1$$ equivalence relations.- 33 Louveau's Theorem.- 34 Proof of Louveau's Theorem.- References.- Elephant Sandwiches.
"Miller includes interesting historical material and references. His taste for slick, elegant proofs makes the book pleasant to read. The author makes good use of his sense of humor...Most readers will enjoy the comments, footnotes, and jokes scattered throughout the book." Studia Logica
"Miller includes interesting historical material and references. His taste for slick, elegant proofs makes the book pleasant to read. The author makes good use of his sense of humor...Most readers will enjoy the comments, footnotes, and jokes scattered throughout the book." Studia Logica
Erscheint lt. Verlag | 18.9.1995 |
---|---|
Reihe/Serie | Lecture Notes in Logic |
Zusatzinfo | IV, 133 p. 1 illus. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 224 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre | |
Schlagworte | Algebra • forcing • Function • Logic • Mathematica • Mathematical Logic • Proof • set theory • Theorem • well-ordering principle |
ISBN-10 | 3-540-60059-0 / 3540600590 |
ISBN-13 | 978-3-540-60059-6 / 9783540600596 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich