Advancement of Optical Methods in Experimental Mechanics, Volume 3 (eBook)

Proceedings of the 2016 Annual Conference on Experimental and Applied Mechanics 
eBook Download: PDF
2016 | 1st ed. 2017
XV, 341 Seiten
Springer International Publishing (Verlag)
978-3-319-41600-7 (ISBN)

Lese- und Medienproben

Advancement of Optical Methods in Experimental Mechanics, Volume 3 -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Advancement of Optical Methods in Experimental Mechanics, Volume 3 of the Proceedings of the 2016 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the third volume of ten from the Conference, brings together contributions to this important area of research and engineering.  The collection presents early findings and case studies on a wide range of optical methods ranging from traditional photoelasticity and interferometry to more recent DIC and DVC techniques, and includes papers in the following general technical research areas: 

  • Advances in Digital Image Correlation
  • Challenging Applications of DIC
  • Uncertainty Analysis & Improvements to DIC Accuracy
  • Photoelasticity, Interferometry, & Moire Methods
  • Applications of Stereovision
  • Inverse Methods at High Strain Rates
  • Inverse Methods in Plasticity



Prof. Sanichiro Yoshida-Southeastern Louisiana University, USA; Prof. Luciano Lamberti -Politecnico di Bari, Italy; Prof. Cesar A. Sciammarella - Illinois Institute of Technology, USA

Prof. Sanichiro Yoshida—Southeastern Louisiana University, USA; Prof. Luciano Lamberti -Politecnico di Bari, Italy; Prof. Cesar A. Sciammarella – Illinois Institute of Technology, USA

Preface 6
Contents 8
Contributors 12
Chapter 1: A General Mathematical Model to Retrieve Displacement Information from Fringe Patterns 17
1.1 Introduction 17
1.2 Two Dimensional Sinusoidal Functions 19
1.3 The Monogenic 2D Signal 23
1.4 The Riesz Transform 25
1.5 Retrieval of the Monogenic Vector 26
1.6 Generalized Hilbert Transform for Signal Phase Retrieval 28
1.7 Transition from the Continuum to Actual Signals 29
1.8 Process of Phase Recovery 32
1.9 Application Examples 33
1.10 Summary and Conclusions 38
References 40
Chapter 2: Full-Field High-Strain Evaluation from Wrapped ESPI Data Using Phasors 41
2.1 Introduction 41
2.2 Proposed Strain Calculation Approach 42
2.3 Measurement Setup 43
2.4 Phase Filtering 44
2.5 Example Experimental Measurements 46
2.6 Discussion 47
2.7 Conclusions 48
References 50
Chapter 3: Dynamic Deformation with Static Load 51
3.1 Introduction 51
3.2 Experimental Arrangement 52
3.3 Results and Discussion 53
3.4 Summary 55
References 55
Chapter 4: Full-Field Digital Holographic Vibrometry for Characterization of High-Speed MEMS 57
4.1 Introduction 57
4.2 Methods 58
4.2.1 2+N Local Phase Correlation (LC) Method 58
4.2.2 Continuous Phase Sampling Approach 58
4.2.3 Modular Interferometric Station (MIS) 59
4.3 Deformable MEMS Mirror Device (DMD) 60
4.3.1 Device Capabilities 60
4.3.2 Control System 60
4.4 Representative Results 60
4.5 Conclusions and Future Work 60
References 62
Chapter 5: Surface Orientation Measurement Using Sampling Moire Method 64
5.1 Introduction 64
5.2 Principle of Sampling Moire Method 65
5.3 Method to Measure Surface Orientation 66
5.4 Experiment 66
5.5 Conclusions 69
References 69
Chapter 6: DD-DIC: A Parallel Finite Element Based Digital Image Correlation Solver 70
6.1 Introduction 70
6.2 Finite Element Digital Image Correlation 71
6.3 A Non-overlapping Dual Domain Decomposition Method 72
6.4 Mechanical Regularization 73
6.5 Conclusion 74
References 74
Chapter 7: A New In Situ Planar Biaxial Far-Field High Energy Diffraction Microscopy Experiment 75
7.1 Introduction 76
7.1.1 Background 76
7.2 Methods 76
7.2.1 Experimental Setup 76
7.2.2 Finite Element Analysis Approach 77
7.2.3 Specimen Preparation 78
7.3 Results and Discussion 78
7.3.1 Specimen Design 78
7.3.1.1 Geometries 78
7.3.1.2 Diffraction Considerations 79
7.3.1.3 Mechanical Behavior 79
7.3.1.4 Experimental Validation 82
7.3.2 HEDM Grain Mapping 82
7.4 Conclusions 83
References 83
Chapter 8: Thermal Strain Measurement Using Digital Image Correlation with Systematic Error Elimination 85
8.1 Introduction 85
8.2 Eliminating Error in Displacement Obtained by DIC 86
8.3 Experiment 87
8.4 Result of DIC 88
8.5 Conclusions 89
References 90
Chapter 9: Investigating the Tensile Response of Materials at High Temperature Using DIC 91
9.1 Introduction 91
9.2 Experimental 92
9.3 Identification of Temperature-Dependent Constitutive Response 92
9.4 Results and Discussion 93
9.5 Summary 96
References 96
Chapter 10: Hybrid Stereocorrelation for 3D Thermomechanical Field Measurements 97
10.1 Introduction 97
10.2 Experimental Setup 98
10.3 Stereocorrelation 98
10.4 Results and Discussions 100
10.5 Conclusions and Perspectives 102
References 102
Chapter 11: Experimental Characterization of the Mechanical Properties of 3D Printed ABS and Polycarbonate Parts 103
11.1 Introduction 104
11.2 Fabrication Methods, Experimental Set-Ups, and Procedures 106
11.2.1 Materials and Specimen Fabrication 106
11.2.2 Testing Machine and Experimental Set-Up 107
11.2.3 Experimental Procedure 108
11.3 Results 109
11.3.1 Tension 109
11.3.2 Shear 113
11.4 Conclusion 118
References 118
Chapter 12: Experimental Determination of Transfer Length in Pre-stressed Concrete Using 3D-DIC 120
12.1 Introduction 120
12.2 Experimental Setup 121
12.2.1 Specimen Surface Preparation for DIC 123
12.2.2 Stereo Camera Calibration and Image Acquisition 124
12.3 Result and Discussions 124
12.3.1 Measurement of Transfer Length 124
12.4 Conclusions 124
References 126
Chapter 13: Hybrid Infrared Image Correlation Technique to Deformation Measurement of Composites 127
13.1 Introduction 127
13.2 Materials and Methods 127
13.2.1 IRT Experimental System 127
13.2.2 Specimens and Tests 128
13.2.3 Image Processing 129
13.3 Test Results and Discussion 129
13.4 Conclusion 131
References 131
Chapter 14: DIC Anisotropic Denoising Based on Uncertainty 132
14.1 Introduction 132
14.2 Method 133
14.3 DIC Challenge Sample 14 134
14.4 DIC Challenge Sample 12 136
14.5 Conclusion 137
References 137
Chapter 15: An Applications-Oriented Measurement System Analysis of 3D Digital Image Correlation 138
15.1 Introduction 138
15.2 Materials and Methods 139
15.2.1 Experimental Setup 139
15.2.2 Measurement Process 140
15.3 Uncertainty Sources 140
15.3.1 MSA Scope 140
15.3.2 Displacement Uncertainty Due to the Calibration 141
15.3.3 Displacement Uncertainty Due to the Speckle Pattern 141
15.3.4 Displacement Uncertainty Due to Image Noise 141
15.3.5 Displacement Uncertainty Due to DIC Computations 142
15.4 Results and Discussion 142
15.5 Conclusions 144
References 145
Chapter 16: Preliminary Study on Determination Pointing-Knowledge of Camera-Pair Used for 3D-DIC 146
16.1 Introduction 146
16.2 Experimental Setup 147
16.3 Results and Discussions 147
16.3.1 2D DIC 148
16.3.2 3D DIC 150
16.4 Conclusions 152
References 153
Chapter 17: Analysis of Dynamic Bending Using DIC and Virtual Fields Method 154
17.1 Introduction 154
17.2 Experimental 155
17.3 Ultra-High Speed Imaging and DIC 156
17.4 Full-Field Displacement and Strain 156
17.5 Viscoplastic Constitutive Parameter Identification 157
17.6 Summary 161
References 161
Chapter 18: Elimination of Periodical Error for Bi-directional Displacement in Digital Image Correlation Method 162
18.1 Introduction 162
18.2 Periodical Error Elimination 163
18.3 Experiment 164
18.4 Results and Discussion 164
18.5 Conclusion 166
References 166
Chapter 19: The Cluster Approach Applied to Multi-Camera 3D DIC System 167
19.1 Introduction 167
19.2 DIC Using the Cluster Approach 167
19.3 DIC Multi Camera Setup Using Four Cameras 169
19.4 DIC Multi Camera Setups in One Side Arrangement 169
19.4.1 Component Testing 171
19.5 Hemisphere Testing 172
19.6 Conclusion 172
References 173
Chapter 20: Self-adaptive Isogeometric Global Digital Image Correlation and Digital Height Correlation 174
20.1 Introduction, Motivation, and Goal 174
20.2 Digital Image Correlation 175
20.3 NURBS Shape Functions 175
20.4 Hierarchical Refinement 176
20.5 Adaptive Refinement in 2D Isogeometric Digital Image Correlation 177
20.6 Adaptive Refinement in 3D Isogeometric Digital Height Correlation (DHC) 179
20.7 Conclusions 180
References 180
Chapter 21: Ultrasonic Test for High Rate Material Property Imaging 182
21.1 Introduction 182
21.2 Objectives and Methodology 183
21.3 Results and Analysis 183
21.4 Conclusion 184
References 184
Chapter 22: The Virtual Fields Method to Rubbers Under Medium Strain Rates 186
22.1 Introduction 186
22.2 Simulation 189
22.3 Experiment 192
22.4 Conclusions 193
References 194
Chapter 23: Inertial Impact Tests on Polymers for Inverse Parameter Identification 195
23.1 Introduction 195
23.2 Experimental Methods 195
23.3 Virtual Fields Method 196
23.4 Results and Discussion 197
References 198
24: Full-Field Identification Methods: Comparison of FEM Updating and Integrated DIC 199
24.1 Introduction 199
24.2 Full-Field Identification Methods 200
24.2.1 FEM Updating 200
24.2.2 Integrated DIC 200
24.2.3 Load Residuals 201
24.3 Virtual Experiment 202
24.4 Results and Conclusions 202
References 205
Chapter 25: Finite Element Stereo Digital Image Correlation Measurement for Plate Model 206
25.1 Introduction 206
25.2 Physical Quadrature Formulation 207
25.3 Mechanical Regularization 207
25.4 Conclusion 208
References 209
Chapter 26: Measurement of Orthogonal Surface Gradients and Reconstruction of Surface Topography from Digital Gradient Sensing... 210
26.1 Introduction 210
26.2 Experimental Setup and Working Principles 210
26.3 Wafer Subjected to Central Loading 211
26.4 Conclusion 213
References 213
Chapter 27: Opportunities for Inverse Analysis in Dynamic Tensile Testing 214
27.1 Introduction 214
27.2 Results 215
27.2.1 Ringup 215
27.2.2 Equilibrium Deformation 217
27.2.3 Necking 218
27.3 Conclusions 218
References 219
Chapter 28: Determination of the Dynamic Strain Hardening Parameters from Acceleration Fields 220
28.1 Introduction 220
28.2 Identification Procedure 220
28.2.1 Logarithmic (True) Strain 220
28.2.2 Constitutive Model 221
28.2.3 The Virtual Fields Method 221
28.2.4 Speed and Acceleration 222
28.3 FE Simulation 222
28.3.1 FE Model 222
28.3.2 Effect of Strain Rates 223
28.4 A Novel High Speed Tensile Tester 224
28.4.1 Impact Frame High Speed Test (IFHS Tests) 224
28.4.2 Experiments 224
28.5 Conclusion 225
References 225
Chapter 29: Image-Based Inertial Impact Tests on an Aluminum Alloy 226
29.1 Introduction 226
29.2 The Virtual Fields Method 227
29.3 Methods 228
29.3.1 Validation Using Simulated Measurements 228
29.3.2 Experimental Protocol 228
29.3.3 Data Processing 229
29.4 Results and Discussion 229
29.5 Conclusions 230
References 230
Chapter 30: Inverse Material Characterization from 360-Deg DIC Measurements on Steel Samples 231
30.1 Introduction 231
30.2 Experimental Setup and Test Methodology 232
30.3 Validation of Constitutive Laws, Experimental Results, and Discussion 233
30.4 Conclusions 236
References 236
Chapter 31: Identification of Plastic Behaviour and Formability Limits of Aluminium Alloys at High Temperature 238
31.1 Introduction 238
31.2 Materials and Experimental Techniques 239
31.2.1 Materials 239
31.2.2 Experimental Tests 239
31.3 Optical Methods 240
31.4 Results 242
31.5 Conclusions 244
References 246
Chapter 32: Accurate Strain Distribution Measurement Based on the Sampling Moiré Method 247
32.1 Introduction 247
32.2 Principle 248
32.2.1 Principle of the Sampling Moiré Method 248
32.2.2 Compensation of Fringe Order to Improve Strain Measurement Accuracy 250
32.2.3 Adaption of Spatial Filtering (Sine/Cosine Average Filter) to Reduce Random Noise 250
32.3 Experiment 251
32.3.1 Specimen and Grid Fabrication 251
32.3.2 Experimental Setup and Analysis Condition 251
32.3.3 Experimental Results 252
32.4 Conclusions 253
References 253
Chapter 33: Full-Field Measurements of Principal Strains and Orientations Using Moiré Fringes 254
33.1 Introduction 254
33.2 Strain Measurement Methods 255
33.2.1 Normal and Shear Strains from Scanning Moiré Method 255
33.2.2 Principal Strains from Analysis of Strain Status 256
33.3 Materials and Loading Experiments 256
33.3.1 Specimen Preparation and Mechanical Properties 256
33.3.2 Grating Fabrication and Loading Test in SEM 257
33.4 Strain Distributions and Discussion 258
33.4.1 SEM Moiré Fringes and Displacement Distributions 258
33.4.2 Distributions of Normal and Shear Strains 259
33.4.3 Distributions of Principal Strains and Orientations 261
33.5 Conclusions 262
References 262
Chapter 34: A Self-Recalibrated 3D Vision System for Accurate 3D Tracking in Hypersonic Wind Tunnel 263
34.1 Introduction 263
34.2 Theory 264
34.2.1 The Non-iterative Method 264
34.2.2 The Orthogonal Iterative Method 265
34.3 Experiments 266
34.3.1 Synthetic Experiments 266
34.3.2 Experiments and Applications in Hypersonic Wind Tunnel 267
34.4 Conclusions 270
References 271
Chapter 35: Evaluating Stress Triaxiality and Fracture Strain of Steel Sheet Using Stereovision 272
35.1 Introduction 272
35.2 Evaluation Methods of the Stress Triaxiality 273
35.3 Experimental Method 274
35.4 Experimental Results 275
35.5 Discussion 277
35.6 Conclusions 277
References 278
Chapter 36: Shadowgraph Optical Technique for Measuring the Shock Hugoniot from Standard Electric Detonators 279
36.1 Introduction 279
36.2 Theory Background 280
36.2.1 Air Shock Characterization 281
36.2.2 Initiation Strength: Energy Fluence 282
36.3 Experimental Procedure 282
36.3.1 Number #6: Detonator with Fluid-Desensitizing Function and Number #8: Electric SP 282
36.3.2 Shadowgraph Technique 283
36.3.2.1 Retro-Reflective Shadowgraphy Experimental Methods 283
36.3.3 Pressure Gauges 284
36.4 Results and Discussion 284
36.4.1 Camera Results 284
36.4.2 Gauge Measurements 285
36.4.3 Air Shock Properties and Energy Fluence 288
36.5 Conclusion 292
References 292
Chapter 37: Assessment of Fringe Pattern Normalisation for Twelve Fringe Photoelasticity 294
37.1 Introduction 294
37.2 Normalisation of Isochromatic Image 295
37.3 Isochromatic Demodulation by Image Normalisation 295
37.3.1 High Fringe Gradient Zones 296
37.3.2 Low Fringe Gradient Zones 297
37.4 Conclusions 297
References 298
Chapter 38: Novel Scanning Scheme for White Light Photoelasticity 299
38.1 Introduction 299
38.2 Fringe Resolution Guided Scanning Scheme 300
38.2.1 Creation of Resolution Map 300
38.2.2 Experimental Isochromatic Colour Images 301
38.2.3 Scanning Scheme 301
38.3 Results and Discussions 303
38.4 Conclusions 304
References 304
Chapter 39: Investigation of Non-equibiaxial Thin Film Stress by Using Stoney Formula 305
39.1 Introduction 305
39.2 Theory 306
39.2.1 Stoney Formula [6] 306
39.2.2 Four-Step Phase Shifting in Photoelasticity 306
39.3 Experimental Setup 307
39.4 Results and Discussions 308
39.5 Conclusions 309
References 316
Chapter 40: ESPI Analysis of Thermo-Mechanical Behavior of Electronic Components 318
40.1 Introduction 318
40.2 Materials and Methods 319
40.3 Results and Discussion 320
40.4 Conclusions 322
References 322
Chapter 41: Shear Banding Observed in Real-Time with a Laser Speckle Method 324
41.1 Introduction 324
41.2 Method Description 325
41.2.1 Optical Detection of Shear Bands by DynaMat Laser Speckle Measurement System 325
41.2.2 The Reference Method: Scanning Electron Microscopy 325
41.2.3 The Specimen Preparation 326
41.2.4 The Measurements 326
41.3 Results 326
41.4 Discussion 327
41.5 Conclusion 328
References 329
Chapter 42: Numerical and Experimental Eigenmode Analysis of Low Porosity Auxetic Structures 331
42.1 Introduction 331
42.2 Fabrication of the Samples 332
42.3 Experimental Procedures and Methods 333
42.4 Results and Discussions 334
42.5 Conclusions 337
References 337

Erscheint lt. Verlag 7.9.2016
Reihe/Serie Conference Proceedings of the Society for Experimental Mechanics Series
Conference Proceedings of the Society for Experimental Mechanics Series
Zusatzinfo XV, 341 p. 323 illus., 241 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik Maschinenbau
Schlagworte Conference Proceedings Experimental and Applied Mechanics • DiC • experimental mechanics • Optical Materials • Tomography
ISBN-10 3-319-41600-6 / 3319416006
ISBN-13 978-3-319-41600-7 / 9783319416007
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 25,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich