Mathematics for Neuroscientists - Fabrizio Gabbiani, Steven James Cox

Mathematics for Neuroscientists

Buch | Hardcover
628 Seiten
2017 | 2nd edition
Academic Press Inc (Verlag)
978-0-12-801895-8 (ISBN)
115,95 inkl. MwSt
Mathematics for Neuroscientists, Second Edition, presents a comprehensive introduction to mathematical and computational methods used in neuroscience to describe and model neural components of the brain from ion channels to single neurons, neural networks and their relation to behavior. The book contains more than 200 figures generated using Matlab code available to the student and scholar. Mathematical concepts are introduced hand in hand with neuroscience, emphasizing the connection between experimental results and theory.

Dr. Gabbiani is Professor in the Department of Neuroscience at the Baylor College of Medicine. Having received the prestigious Alexander von Humboldt Foundation research prize in 2012, he just completed a one-year cross appointment at the Max Planck Institute of Neurobiology in Martinsried and has international experience in the computational neuroscience field. Together with Dr. Cox, Dr. Gabbiani co-authored the first edition of this bestselling book in 2010. Dr. Cox is Professor of Computational and Applied Mathematics at Rice University. Affiliated with the Center for Neuroscience, Cognitive Sciences Program, and the Ken Kennedy Institute for Information Technology, he is also Adjunct Professor of Neuroscience at the Baylor College of Medicine. In addition, Dr. Cox has served as Associate Editor for a number of mathematics journals, including the Mathematical Medicine and Biology and Inverse Problems. He previously authored the first edition of this title with Dr. Gabbiani.

1. Introduction2. The Passive Isopotential Cell3. Differential Equations4. The Active Isopotential Cell5. The Quasi-Active Isopotential Cell6. The Passive Cable7. Fourier Series and Transforms8. The Passive Dendritic Tree9. The Active Dendritic Tree10. Extracellular Potential11. Reduced Single Neuron Models12. Probability and Random Variables13. Synaptic Transmission and Quantal Release14. Neuronal Calcium SignalingNeuronal Calcium Signaling15. Neurovascular Coupling, the BOLD Signal and MRI16. The Singular Value Decomposition and ApplicationsThe Singular Value Decomposition and Applications17. Quantification of Spike Train Variability18. Stochastic Processes19. Membrane NoiseMembrane Noise20. Power and Cross-Spectra21. Natural Light Signals and Phototransduction22. Firing Rate Codes and Early Vision23. Models of Simple and Complex Cells24. Models of Motion Detection25. Stochastic Estimation Theory26. Reverse-Correlation and Spike Train Decoding27. Signal Detection Theory28. Relating Neuronal Responses and Psychophysics29. Population CodesPopulation Codes30. Neuronal Networks31. Solutions to Exercises

Erscheinungsdatum
Verlagsort San Diego
Sprache englisch
Maße 216 x 276 mm
Gewicht 1950 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Medizin / Pharmazie Medizinische Fachgebiete Neurologie
Naturwissenschaften Biologie Humanbiologie
Naturwissenschaften Biologie Zoologie
ISBN-10 0-12-801895-X / 012801895X
ISBN-13 978-0-12-801895-8 / 9780128018958
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Elastostatik

von Dietmar Gross; Werner Hauger; Jörg Schröder …

Buch | Softcover (2024)
Springer Vieweg (Verlag)
33,36