Sparse Representation, Modeling and Learning in Visual Recognition - Hong Cheng

Sparse Representation, Modeling and Learning in Visual Recognition

Theory, Algorithms and Applications

(Autor)

Buch | Softcover
257 Seiten
2016 | Softcover reprint of the original 1st ed. 2015
Springer London Ltd (Verlag)
978-1-4471-7251-2 (ISBN)
106,99 inkl. MwSt
This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. covers feature representation and learning, sparsity induced similarity, and sparse representation and learning-based classifiers;
This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: describes sparse recovery approaches, robust and efficient sparse representation, and large-scale visual recognition; covers feature representation and learning, sparsity induced similarity, and sparse representation and learning-based classifiers; discusses low-rank matrix approximation, graphical models in compressed sensing, collaborative representation-based classification, and high-dimensional nonlinear learning; includes appendices outlining additional computer programming resources, and explaining the essential mathematics required to understand the book.

Dr. Hong Cheng is Professor in the School of Automation Engineering, and Deputy Executive Director of the Center for Robotics at the University of Electronic Science and Technology of China. His other publications include the Springer book Autonomous Intelligent Vehicles.

Part I: Introduction and Fundamentals.- Introduction.- The Fundamentals of Compressed Sensing.- Part II: Sparse Representation, Modeling and Learning.- Sparse Recovery Approaches.- Robust Sparse Representation, Modeling and Learning.- Efficient Sparse Representation and Modeling.- Part III: Visual Recognition Applications.- Feature Representation and Learning.- Sparsity Induced Similarity.- Sparse Representation and Learning Based Classifiers.- Part IV: Advanced Topics.- Beyond Sparsity.- Appendix A: Mathematics.- Appendix B: Computer Programming Resources for Sparse Recovery Approaches.- Appendix C: The source Code of Sparsity Induced Similarity.- Appendix D: Derivations.

Erscheinungsdatum
Reihe/Serie Advances in Pattern Recognition
Zusatzinfo 73 Illustrations, black and white; XIV, 257 p. 73 illus.
Verlagsort England
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte compressed sensing • Dictionary Learning • Sparse Bayesian Learning • sparse coding • Sparse Representation • Sparsity Induced Similarity • Visual Recognition
ISBN-10 1-4471-7251-5 / 1447172515
ISBN-13 978-1-4471-7251-2 / 9781447172512
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Modelle für 3D-Druck und CNC entwerfen

von Lydia Sloan Cline

Buch | Softcover (2022)
dpunkt (Verlag)
34,90
Einstieg und Praxis

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2023)
Markt + Technik (Verlag)
19,95
alles zum Drucken, Scannen, Modellieren

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2024)
Markt + Technik Verlag
24,95