Credit Risk Analytics (eBook)

Measurement Techniques, Applications, and Examples in SAS
eBook Download: EPUB
2016 | 1. Auflage
512 Seiten
John Wiley & Sons (Verlag)
978-1-119-27828-3 (ISBN)

Lese- und Medienproben

Credit Risk Analytics - Bart Baesens, Daniel Roesch, Harald Scheule
Systemvoraussetzungen
68,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The long-awaited, comprehensive guide to practical credit risk modeling

Credit Risk Analytics provides a targeted training guide for risk managers looking to efficiently build or validate in-house models for credit risk management. Combining theory with practice, this book walks you through the fundamentals of credit risk management and shows you how to implement these concepts using the SAS credit risk management program, with helpful code provided. Coverage includes data analysis and preprocessing, credit scoring; PD and LGD estimation and forecasting, low default portfolios, correlation modeling and estimation, validation, implementation of prudential regulation, stress testing of existing modeling concepts, and more, to provide a one-stop tutorial and reference for credit risk analytics. The companion website offers examples of both real and simulated credit portfolio data to help you more easily implement the concepts discussed, and the expert author team provides practical insight on this real-world intersection of finance, statistics, and analytics.

SAS is the preferred software for credit risk modeling due to its functionality and ability to process large amounts of data. This book shows you how to exploit the capabilities of this high-powered package to create clean, accurate credit risk management models.

* Understand the general concepts of credit risk management

* Validate and stress-test existing models

* Access working examples based on both real and simulated data

* Learn useful code for implementing and validating models in SAS

Despite the high demand for in-house models, there is little comprehensive training available; practitioners are left to comb through piece-meal resources, executive training courses, and consultancies to cobble together the information they need. This book ends the search by providing a comprehensive, focused resource backed by expert guidance. Credit Risk Analytics is the reference every risk manager needs to streamline the modeling process.

BART BAESENS is a professor at KU Leuven (Belgium) and a lecturer at the University of Southampton (United Kingdom). DANIEL RÖSCH is a professor in business and management and chair in statistics and risk management at the University of Regensburg (Germany). HARALD SCHEULE is an associate professor of finance at the University of Technology Sydney (Australia) and a regional director of the Global Association of Risk Professionals.

Acknowledgments xi

About the Authors xiii

Chapter 1 Introduction to Credit Risk Analytics 1

Chapter 2 Introduction to SAS Software 17

Chapter 3 Exploratory Data Analysis 33

Chapter 4 Data Preprocessing for Credit Risk Modeling 57

Chapter 5 Credit Scoring 93

Chapter 6 Probabilities of Default (PD): Discrete-Time Hazard Models 137

Chapter 7 Probabilities of Default: Continuous-Time Hazard Models 179

Chapter 8 Low Default Portfolios 213

Chapter 9 Default Correlations and Credit Portfolio Risk 237

Chapter 10 Loss Given Default (LGD) and Recovery Rates 271

Chapter 11 Exposure at Default (EAD) and Adverse Selection 315

Chapter 12 Bayesian Methods for Credit Risk Modeling 351

Chapter 13 Model Validation 385

Chapter 14 Stress Testing 445

Chapter 15 Concluding Remarks 475

Index 481

Erscheint lt. Verlag 19.9.2016
Reihe/Serie SAS Institute Inc
SAS Institute Inc
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Recht / Steuern Wirtschaftsrecht
Betriebswirtschaft / Management Spezielle Betriebswirtschaftslehre Bankbetriebslehre
Schlagworte Finance & Investments • Finance & Investments Special Topics • Finanz- u. Anlagewesen • Finanzwesen • Spezialthemen Finanz- u. Anlagewesen
ISBN-10 1-119-27828-7 / 1119278287
ISBN-13 978-1-119-27828-3 / 9781119278283
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 30,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ideen und Erfolgskonzepte für die Praxis

von Marcel Seidel; Svend Reuse

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
46,99
Keith Cheeseman Reveals the True Story of Britain's Biggest Ever …

von Keith Cheeseman; Clifford Thurlow

eBook Download (2024)
Icon Books Ltd (Verlag)
24,00