Convolution Copula Econometrics
Springer International Publishing (Verlag)
978-3-319-48014-5 (ISBN)
Umberto Cherubini is Associate professor of Financial Mathematics at the University of Bologna, where he heads the graduate program in Quantitative Finance. He is fellow of the Financial Econometrics Research Center (FERC), a member of the Scientific Committees of Abiformazione - the professional education arm of the Italian Banking Association, and AIFIRM - the Italian Association of Financial Risk Managers. He has been consulting and teaching in the field of finance and risk management for almost twenty years. Before joining academia he worked as an economist at the Economic Research Department of BCI Milan. He has published papers on finance and economics in international journals, and is a co-author of seven books on topics of risk management and financial mathematics, with special focus on the copula function technique. Fabio Gobbi is a post-doctoral researcher at the University of Bologna. He has a PhD in Statistics from the University of Florence and his area of research focuses on probability and financial econometrics. He is a co-author (with Umberto Cherubini and Sabrina Mulinacci) of the recent book Dynamic Copula Methods in Finance, the first book to introduce the theory of convolution-based copulas and the concept of C-convolution within the mainstream of the Darsow, Nguyen and Olsen (DNO) application of copulas to Markov processes. Sabrina Mulinacci is Associate Professor of Mathematical Methods for Economics and Finance at the University of Bologna. Prior to this, Sabrina was Associate Professor of Mathematical Methods for Economics and Actuarial Sciences at the Catholic University of Milan. She has a PhD in Mathematics from the University of Pisa and has published a number of research papers in international journals on probability and mathematical finance.
Preface.- The Dynamics of Economic Variables.- Estimation of Copula Models.- Copulas and Estimation of Markov Processes.- Copula-based Markov Processes: Estimation, Mixing Properties and Long-term Behavior.- Convolution-based Processes.- Application to Interest Rates.
"The goal of the book is to gather the main concepts of copula function theory that can be applied to the analysis of time series (so-called convolution-based copulas), and some new ideas, linked to copulas, such as estimation of copula-based Markov processes. ... The book will be useful for the researchers working in econometrics, interest rate, Markov processes and copulas fields." (Anatoliy Swishchuk, zbMATH 1360.62006, 2017)
Erscheinungsdatum | 22.12.2016 |
---|---|
Reihe/Serie | SpringerBriefs in Statistics |
Zusatzinfo | X, 90 p. 31 illus., 30 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
Wirtschaft ► Allgemeines / Lexika | |
Wirtschaft ► Volkswirtschaftslehre ► Ökonometrie | |
Schlagworte | 62M05, 60G99 • Applications of Mathematics • Applied mathematics • autoregressive process • convolution-based process • Copula Functions • Econometrics • Econometrics and economic statistics • Economics, Finance, Business and Management • interest rates • long memory time series • Markov process • mathematics and statistics • probability and statistics • Probability theory and stochastic processes • Statistical Theory and Methods • Statistics for Business/Economics/Mathematical Fin • Stochastic Processes • stochastics • Time Series Analysis |
ISBN-10 | 3-319-48014-6 / 3319480146 |
ISBN-13 | 978-3-319-48014-5 / 9783319480145 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich