Advances in Big Data -

Advances in Big Data

Proceedings of the 2nd INNS Conference on Big Data, October 23-25, 2016, Thessaloniki, Greece
Buch | Softcover
XVII, 348 Seiten
2016 | 1st ed. 2017
Springer International Publishing (Verlag)
978-3-319-47897-5 (ISBN)
160,49 inkl. MwSt
The book offers a timely snapshot of neural network technologies as a significant component of big data analytics platforms. It promotes new advances and research directions in efficient and innovative algorithmic approaches to analyzing big data (e.g. deep networks, nature-inspired and brain-inspired algorithms); implementations on different computing platforms (e.g. neuromorphic, graphics processing units (GPUs), clouds, clusters); and big data analytics applications to solve real-world problems (e.g. weather prediction, transportation, energy management). The book, which reports on the second edition of the INNS Conference on Big Data, held on October 23-25, 2016, in Thessaloniki, Greece, depicts an interesting collaborative adventure of neural networks with big data and other learning technologies.

Predicting human behavior based on web search activity: Greek referendum of 2015.- Compact Video Description and Representation for Automated Summarization of Human Activities.- Attribute Learning for Network Intrusion Detection.- A Fast Deep Convolutional Neural Network for face detection in Big Visual Data.- Learning Symbols by Neural Network.- Designing HMMs models in the age of Big Data.- Extended Formulations for Online Action Selection on Big Action Sets.- Multi-Task Deep Neural Networks for Automated Extraction of Primary Site and Laterality Information from Cancer Pathology Reports.- An infrastructure and approach for infering knowledge over Big Data in the Vehicle Insurance Industry.- Unified Retrieval Model of Big Data.- Adaptive Elitist Differential Evolution Extreme Learning Machines on Big Data: Intelligent Recognition of Invasive Species.

Erscheinungsdatum
Reihe/Serie Advances in Intelligent Systems and Computing
Zusatzinfo XVII, 348 p. 101 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik
Schlagworte ANNS • Artificial Intelligence • artificial intelligence (incl. robotics) • Autonomous, Online, Incremental Learning In Big Da • Autonomous, Online, Incremental Learning In Big Data • Big Data Analytics • Big Data And Cloud Computing • Big Data Streams Analytics • Cognitive Modeling And Big Data • Computational Intelligence • Data Mining • data mining and knowledge discovery • Deep Neural Network Learning • Deep Reinforcement Learning • Engineering • Engineering: general • Evolutionary Systems And Big Data • Evolving Systems For Big Data Analytics • Expert systems / knowledge-based systems • Fuzzy Data Analysis • Information Propagation Analysis • INNS-BigData 2016 • Learning Algorithms Streaming Data • Neuromorphic Hardware • Online Learning • Online Social Networks • Recommendation Systems/Collaborative Filtering For • Recommendation Systems/Collaborative Filtering For Big Data • Robotics • Scalable Algorithms For Big Data • systems neuroscience
ISBN-10 3-319-47897-4 / 3319478974
ISBN-13 978-3-319-47897-5 / 9783319478975
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90