Mastering Data Mining with Python – Find patterns hidden in your data (eBook)

(Autor)

eBook Download: EPUB
2016
268 Seiten
Packt Publishing (Verlag)
978-1-78588-591-4 (ISBN)

Lese- und Medienproben

Mastering Data Mining with Python – Find patterns hidden in your data - Megan Squire
Systemvoraussetzungen
41,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Learn how to create more powerful data mining applications with this comprehensive Python guide to advance data analytics techniques

About This Book

  • Dive deeper into data mining with Python - don't be complacent, sharpen your skills!
  • From the most common elements of data mining to cutting-edge techniques, we've got you covered for any data-related challenge
  • Become a more fluent and confident Python data-analyst, in full control of its extensive range of libraries

Who This Book Is For

This book is for data scientists who are already familiar with some basic data mining techniques such as SQL and machine learning, and who are comfortable with Python. If you are ready to learn some more advanced techniques in data mining in order to become a data mining expert, this is the book for you!

What You Will Learn

  • Explore techniques for finding frequent itemsets and association rules in large data sets
  • Learn identification methods for entity matches across many different types of data
  • Identify the basics of network mining and how to apply it to real-world data sets
  • Discover methods for detecting the sentiment of text and for locating named entities in text
  • Observe multiple techniques for automatically extracting summaries and generating topic models for text
  • See how to use data mining to fix data anomalies and how to use machine learning to identify outliers in a data set

In Detail

Data mining is an integral part of the data science pipeline. It is the foundation of any successful data-driven strategy - without it, you'll never be able to uncover truly transformative insights. Since data is vital to just about every modern organization, it is worth taking the next step to unlock even greater value and more meaningful understanding.

If you already know the fundamentals of data mining with Python, you are now ready to experiment with more interesting, advanced data analytics techniques using Python's easy-to-use interface and extensive range of libraries.

In this book, you'll go deeper into many often overlooked areas of data mining, including association rule mining, entity matching, network mining, sentiment analysis, named entity recognition, text summarization, topic modeling, and anomaly detection. For each data mining technique, we'll review the state-of-the-art and current best practices before comparing a wide variety of strategies for solving each problem. We will then implement example solutions using real-world data from the domain of software engineering, and we will spend time learning how to understand and interpret the results we get.

By the end of this book, you will have solid experience implementing some of the most interesting and relevant data mining techniques available today, and you will have achieved a greater fluency in the important field of Python data analytics.

Style and approach

This book will teach you the intricacies in applying data mining using real-world scenarios and will act as a very practical solution to your data mining needs.


Learn how to create more powerful data mining applications with this comprehensive Python guide to advance data analytics techniquesAbout This BookDive deeper into data mining with Python - don't be complacent, sharpen your skills!From the most common elements of data mining to cutting-edge techniques, we've got you covered for any data-related challengeBecome a more fluent and confident Python data-analyst, in full control of its extensive range of librariesWho This Book Is ForThis book is for data scientists who are already familiar with some basic data mining techniques such as SQL and machine learning, and who are comfortable with Python. If you are ready to learn some more advanced techniques in data mining in order to become a data mining expert, this is the book for you!What You Will LearnExplore techniques for finding frequent itemsets and association rules in large data setsLearn identification methods for entity matches across many different types of dataIdentify the basics of network mining and how to apply it to real-world data setsDiscover methods for detecting the sentiment of text and for locating named entities in textObserve multiple techniques for automatically extracting summaries and generating topic models for textSee how to use data mining to fix data anomalies and how to use machine learning to identify outliers in a data setIn DetailData mining is an integral part of the data science pipeline. It is the foundation of any successful data-driven strategy - without it, you'll never be able to uncover truly transformative insights. Since data is vital to just about every modern organization, it is worth taking the next step to unlock even greater value and more meaningful understanding.If you already know the fundamentals of data mining with Python, you are now ready to experiment with more interesting, advanced data analytics techniques using Python's easy-to-use interface and extensive range of libraries.In this book, you'll go deeper into many often overlooked areas of data mining, including association rule mining, entity matching, network mining, sentiment analysis, named entity recognition, text summarization, topic modeling, and anomaly detection. For each data mining technique, we'll review the state-of-the-art and current best practices before comparing a wide variety of strategies for solving each problem. We will then implement example solutions using real-world data from the domain of software engineering, and we will spend time learning how to understand and interpret the results we get.By the end of this book, you will have solid experience implementing some of the most interesting and relevant data mining techniques available today, and you will have achieved a greater fluency in the important field of Python data analytics.Style and approachThis book will teach you the intricacies in applying data mining using real-world scenarios and will act as a very practical solution to your data mining needs.
Erscheint lt. Verlag 29.8.2016
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
ISBN-10 1-78588-591-X / 178588591X
ISBN-13 978-1-78588-591-4 / 9781785885914
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 4,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Grundkurs für Ausbildung und Praxis

von Ralf Adams

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99
Wie Unternehmen Daten zur Skalierung ihres Geschäfts nutzen können

von Jonas Rashedi

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
27,99