Protein Conformational Dynamics
Springer International Publishing (Verlag)
978-3-319-35389-0 (ISBN)
On the experimental side, the technical advances have offered deep insights into the conformational motions of a number of proteins. These studies greatly enrich our knowledge of the interplay between structure and function.
On the theoretical side, novel approaches and detailed computational simulations have provided powerful tools in the study of enzyme catalysis, protein / drug design, protein / ion / other molecule translocation and protein folding/aggregation, to name but a few. This work contains detailed information, not only on the conformational motions of biological systems, but also on the potential governing forces of conformational dynamics (transient interactions, chemical and physical origins, thermodynamic properties). New developments in computational simulations will greatly enhance our understanding of how these molecules function invarious biological events.
Protein folding simulations by generalized-ensemble algorithms.- Application of Markov State Models to Simulate Long Timescale Dynamics of Biological Macromolecules.- Understanding protein dynamics using conformational ensembles.- Generative Models of Conformational Dynamics.- Generalized spring tensor models for protein fluctuation dynamics and conformation changes.- The Joys and Perils of Flexible Fitting.- Coarse-Grained Models of the Proteins Backbone Conformational Dynamics.- Simulating protein folding in different environmental conditions.- Simulating the peptide folding kinetic related spectra based on the Markov State Model.- The Dilemma of Conformational Dynamics in Enzyme Catalysis: Perspectives from Theory and Experiment.- Exploiting protein intrinsic flexibility in drug design.- NMR and computational methods in the structural and dynamic characterization of ligand-receptor interactions.- Molecular Dynamics Simulation of Membrane Proteins.- Free-energy landscape of intrinsically disordered proteins investigated by all-atom multicanonical molecular dynamics.- Coordination and control inside simple biomolecular machines.- Multi-state Targeting Machinery Govern the Fidelity and Efficiency of Protein Localization.- Molecular dynamics simulations of F1-ATPase.- Chemosensorial G-proteins-coupled receptors: a perspective from computational methods.
Erscheinungsdatum | 01.09.2016 |
---|---|
Reihe/Serie | Advances in Experimental Medicine and Biology |
Zusatzinfo | XII, 488 p. 123 illus., 102 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Weitere Themen ► Bioinformatik |
Medizin / Pharmazie ► Studium | |
Naturwissenschaften ► Biologie ► Biochemie | |
Schlagworte | biochemistry • Biology, life sciences • Biomedical and Life Sciences • Biomedicine general • Computer Appl. in Life Sciences • Information technology: general issues • Medical Research • Protein Science |
ISBN-10 | 3-319-35389-6 / 3319353896 |
ISBN-13 | 978-3-319-35389-0 / 9783319353890 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich