Moments, Monodromy, and Perversity (eBook)

A Diophantine Perspective. (AM-159)
eBook Download: PDF
2005
488 Seiten
Princeton University Press (Verlag)
978-1-4008-2695-7 (ISBN)

Lese- und Medienproben

Moments, Monodromy, and Perversity -  Nicholas M. Katz
391,95 € inkl. MwSt
Systemvoraussetzungen
149,99 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen


KatzNicholas M.:

Nicholas M. Katz is Professor of Mathematics at Princeton University. He is the author of five previous books in this series: Arithmetic Moduli of Elliptic Curves (with Barry Mazur); Gauss Sums, Kloosterman Sums, and Monodromy Groups; Exponential Sums and Differential Equations; Rigid Local Systems; and Twisted L-Functions and Monodromy.Nicholas M. Katz is Professor of Mathematics at Princeton University. He is the author of five previous books in this series: Arithmetic Moduli of Elliptic Curves (with Barry Mazur); Gauss Sums, Kloosterman Sums, and Monodromy Groups; Exponential Sums and Differential Equations; Rigid Local Systems; and Twisted L-Functions and Monodromy.


It is now some thirty years since Deligne first proved his general equidistribution theorem, thus establishing the fundamental result governing the statistical properties of suitably "e;pure"e; algebro-geometric families of character sums over finite fields (and of their associated L-functions). Roughly speaking, Deligne showed that any such family obeys a "e;generalized Sato-Tate law,"e; and that figuring out which generalized Sato-Tate law applies to a given family amounts essentially to computing a certain complex semisimple (not necessarily connected) algebraic group, the "e;geometric monodromy group"e; attached to that family. Up to now, nearly all techniques for determining geometric monodromy groups have relied, at least in part, on local information. In Moments, Monodromy, and Perversity, Nicholas Katz develops new techniques, which are resolutely global in nature. They are based on two vital ingredients, neither of which existed at the time of Deligne's original work on the subject. The first is the theory of perverse sheaves, pioneered by Goresky and MacPherson in the topological setting and then brilliantly transposed to algebraic geometry by Beilinson, Bernstein, Deligne, and Gabber. The second is Larsen's Alternative, which very nearly characterizes classical groups by their fourth moments. These new techniques, which are of great interest in their own right, are first developed and then used to calculate the geometric monodromy groups attached to some quite specific universal families of (L-functions attached to) character sums over finite fields.

Nicholas M. Katz is Professor of Mathematics at Princeton University. He is the author of five previous books in this series: Arithmetic Moduli of Elliptic Curves (with Barry Mazur); Gauss Sums, Kloosterman Sums, and Monodromy Groups; Exponential Sums and Differential Equations; Rigid Local Systems; and Twisted L-Functions and Monodromy.

Erscheint lt. Verlag 12.9.2005
Reihe/Serie Annals of Mathematics Studies
Annals of Mathematics Studies
Verlagsort Princeton
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Schlagworte Addition • Additive group • Affine space • Algebraically closed field • algebraic group • Algebraic integer • automorphism • Base change • Big O notation • Central moment • Change of base • Character sum • classical group • Codimension • Computation • conjecture • conjugacy class • Constant function • convolution • corollary • Critical Value • Dense set • Determinant • Dimension • Dimension (vector space) • Diophantine equation • direct sum • discrete group • Disjoint sets • Divisor • Divisor (algebraic geometry) • Eigenvalues and Eigenvectors • Elliptic Curve • empty set • Equidistribution theorem • existential quantification • Exponential sum • Faithful Representation • finite field • finite group • Fourier transform • Function field • function space • Generic point • group theory • hypersurface • Inequality (mathematics) • Integer • irreducible representation • isomorphism class • Leray spectral sequence • L-Function • Linear space (geometry) • Linear subspace • Moment (mathematics) • Monodromy • Morphism • Natural number • normal subgroup • orthogonal group • Parameter • Parameter Space • Parity (mathematics) • Partition of a set • perverse sheaf • polynomial • power series • Prime number • Probability space • Probability Theory • Proper morphism • Pullback (category theory) • p-value • Random Variable • reductive group • Relative dimension • Root of unity • scalar multiplication • scientific notation • Set (mathematics) • Sheaf (mathematics) • Special case • SUBGROUP • Subobject • Subset • Summation • Surjective function • Symmetric group • Symplectic Group • tensor product • Theorem • theory • Topology • Trace (linear algebra) • Trivial group • Unipotent • Variable (mathematics) • Variance • Vector Space • Zariski topology
ISBN-10 1-4008-2695-0 / 1400826950
ISBN-13 978-1-4008-2695-7 / 9781400826957
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 19,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich