Algebra of Proofs -  M. E. Szabo

Algebra of Proofs (eBook)

eBook Download: PDF
2016 | 1. Auflage
310 Seiten
Elsevier Science (Verlag)
978-1-4832-7542-0 (ISBN)
Systemvoraussetzungen
54,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Algebra of Proofs deals with algebraic properties of the proof theory of intuitionist first-order logic in a categorical setting. The presentation is based on the confluence of ideas and techniques from proof theory, category theory, and combinatory logic. The conceptual basis for the text is the Lindenbaum-Tarski algebras of formulas taken as categories. The formal proofs of the associated deductive systems determine structured categories as their canonical algebras (which are of the same type as the Lindenbaum-Tarski algebras of the formulas of underlying languages). Gentzen's theorem, which asserts that provable formulas code their own proofs, links the algebras of formulas and the corresponding algebras of formal proofs. The book utilizes the Gentzen's theorem and the reducibility relations with the Church-Rosser property as syntactic tools. The text explains two main types of theories with varying linguistic complexity and deductive strength: the monoidal type and the Cartesian type. It also shows that quantifiers fit smoothly into the calculus of adjoints and describe the topos-theoretical setting in which the proof theory of intuitionist first-order logic possesses a natural semantics. The text can benefit mathematicians, students, or professors of algebra and advanced mathematics.
Algebra of Proofs deals with algebraic properties of the proof theory of intuitionist first-order logic in a categorical setting. The presentation is based on the confluence of ideas and techniques from proof theory, category theory, and combinatory logic. The conceptual basis for the text is the Lindenbaum-Tarski algebras of formulas taken as categories. The formal proofs of the associated deductive systems determine structured categories as their canonical algebras (which are of the same type as the Lindenbaum-Tarski algebras of the formulas of underlying languages). Gentzen's theorem, which asserts that provable formulas code their own proofs, links the algebras of formulas and the corresponding algebras of formal proofs. The book utilizes the Gentzen's theorem and the reducibility relations with the Church-Rosser property as syntactic tools. The text explains two main types of theories with varying linguistic complexity and deductive strength: the monoidal type and the Cartesian type. It also shows that quantifiers fit smoothly into the calculus of adjoints and describe the topos-theoretical setting in which the proof theory of intuitionist first-order logic possesses a natural semantics. The text can benefit mathematicians, students, or professors of algebra and advanced mathematics.
Erscheint lt. Verlag 3.6.2016
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Technik
ISBN-10 1-4832-7542-6 / 1483275426
ISBN-13 978-1-4832-7542-0 / 9781483275420
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 11,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich