Evolutionary Multi-Objective System Design -

Evolutionary Multi-Objective System Design

Theory and Applications
Buch | Hardcover
242 Seiten
2017
Chapman & Hall/CRC (Verlag)
978-1-4987-8028-5 (ISBN)
159,95 inkl. MwSt
Real-world engineering problems often require concurrent optimization of several design objectives, which are conflicting in cases. This type of optimization is generally called multi-objective or multi-criterion optimization. The area of research that applies evolutionary methodologies to multi-objective optimization is of special and growing interest. It brings a viable computational solution to many real-world problems.

Generally, multi-objective engineering problems do not have a straightforward optimal design. These kinds of problems usually inspire several solutions of equal efficiency, which achieve different trade-offs. Decision makers’ preferences are normally used to select the most adequate design. Such preferences may be dictated before or after the optimization takes place. They may also be introduced interactively at different levels of the optimization process. Multi-objective optimization methods can be subdivided into classical and evolutionary. The classical methods usually aim at a single solution while the evolutionary methods provide a whole set of so-called Pareto-optimal solutions.

Evolutionary Multi-Objective System Design: Theory and Applications

provides a representation of the state-of-the-art in evolutionary multi-objective optimization research area and related new trends. It reports many innovative designs yielded by the application of such optimization methods. It also presents the application of multi-objective optimization to the following problems:






Embrittlement of stainless steel coated electrodes



Learning fuzzy rules from imbalanced datasets



Combining multi-objective evolutionary algorithms with collective intelligence



Fuzzy gain scheduling control



Smart placement of roadside units in vehicular networks



Combining multi-objective evolutionary algorithms with quasi-simplex local search



Design of robust substitution boxes



Protein structure prediction problem



Core assignment for efficient network-on-chip-based system design

Nadia Nedjah, Luiza De Macedo Mourelle, Heitor Silverio Lopes

Embrittlement of Stainless Steel Coated Electrodes. Learning Fuzzy Rules from Imbalanced Datasets using Multi-objective Evolutionary Algorithms. Hybrid Multi-Objective Evolutionary Algorithms with Collective Intelligence. Multiobjective Particle Swarm Optimization Fuzzy Gain Scheduling Control. Multiobjective evolutionary algorithms for smart placement. Solving Multi-Objective Problems with MOEA/D and Quasi-Simplex Local Search. Multi-objective Evolutionary Design of Robust Substitution Boxes. Multi-objective approach to the Protein Structure Prediction Problem. Multi-objective IP Assignment for Efficient NoC-based System Design.

Erscheinungsdatum
Reihe/Serie Chapman & Hall/CRC Computer and Information Science Series
Zusatzinfo 63 Tables, black and white; 50 Illustrations, black and white
Sprache englisch
Maße 156 x 234 mm
Gewicht 476 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
ISBN-10 1-4987-8028-8 / 1498780288
ISBN-13 978-1-4987-8028-5 / 9781498780285
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90