Bayesian Signal Processing (eBook)
640 Seiten
John Wiley & Sons (Verlag)
978-1-119-12548-8 (ISBN)
This book aims to give readers a unified Bayesian treatment starting from the basics (Baye's rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on "Sequential Bayesian Detection," a new section on "Ensemble Kalman Filters" as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to "fill-in-the gaps" of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical "sanity testing" lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theory metrics and their application to PF designs is fully developed and applied. These expansions of the book have been updated to provide a more cohesive discussion of Bayesian processing with examples and applications enabling the comprehension of alternative approaches to solving estimation/detection problems.
The second edition of Bayesian Signal Processing features:
* "Classical" Kalman filtering for linear, linearized, and nonlinear systems; "modern" unscented and ensemble Kalman filters: and the "next-generation" Bayesian particle filters
* Sequential Bayesian detection techniques incorporating model-based schemes for a variety of real-world problems
* Practical Bayesian processor designs including comprehensive methods of performance analysis ranging from simple sanity testing and ensemble techniques to sophisticated information metrics
* New case studies on adaptive particle filtering and sequential Bayesian detection are covered detailing more Bayesian approaches to applied problem solving
* MATLAB® notes at the end of each chapter help readers solve complex problems using readily available software commands and point out other software packages available
* Problem sets included to test readers' knowledge and help them put their new skills into practice Bayesian
Signal Processing, Second Edition is written for all students, scientists, and engineers who investigate and apply signal processing to their everyday problems.
JAMES V. CANDY, PhD, is Chief Scientist for Engineering, a Distinguished Member of the Technical Staff, founder, and former director of the Center for Advanced Signal & Image Sciences at the Lawrence Livermore National Laboratory. He is also an Adjunct Full Professor at the University of California, Santa Barbara, a Fellow of the IEEE, and a Fellow of the Acoustical Society of America. Dr. Candy has published more than 225 journal articles, book chapters, and technical reports. He is also the author of Signal Processing: Model-Based Approach, Signal Processing: A Modern Approach, and Model-Based Signal Processing (Wiley 2006). Dr. Candy was awarded the IEEE Distinguished Technical Achievement Award for his development of model-based signal processing and the Acoustical Society of America Helmholtz-Rayleigh Interdisciplinary Silver Medal for his contributions to acoustical signal processing and underwater acoustics.
Erscheint lt. Verlag | 20.6.2016 |
---|---|
Reihe/Serie | Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control | Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Nachrichtentechnik | |
Schlagworte | Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Engineering statistics • Numerical Methods & Algorithms • Numerische Methoden u. Algorithmen • Signal Processing • Signalverarbeitung • Statistics • Statistik • Statistik in den Ingenieurwissenschaften |
ISBN-10 | 1-119-12548-0 / 1119125480 |
ISBN-13 | 978-1-119-12548-8 / 9781119125488 |
Haben Sie eine Frage zum Produkt? |
Größe: 21,2 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich