Homological Questions in Local Algebra - Jan R. Strooker

Homological Questions in Local Algebra

(Autor)

Buch | Softcover
324 Seiten
1990
Cambridge University Press (Verlag)
978-0-521-31526-5 (ISBN)
73,55 inkl. MwSt
This book presents an account of several conjectures arising in commutative algebra from the pioneering work of Serre and Auslander-Buchsbaum. The approach is via Hochster's 'Big Cohen-Macaulay modules', though the complementary view point of Peskine-Szpiro and Roberts, who study the homology of certain complexes, is not neglected. Various refinements of Hochster's construction, obtained in collaboration with Bartijn, are included. A special feature is a long chapter written by Van den Dries which explains how a certain type of result can be 'lifted' from prime characteristic to characteristic zero. Though this is primarily a research monograph, it does provide introductions to most of the topics treated. Non-experts may therefore find it an appealing guide into an active area of algebra.

1. Homological preliminaries; 2. Adic topologies and completions; 3. Injective envelopes and minimal injective resolutions; 4. Local cohomology and koszul complexes; 5. (Pre-) Regular sequences and depth; 6. Exactness of complexes and linear equations over rings; 7. Comparing homological invariants; 8. Dimensions; 9. Cohen-Macauley modules and regular rings; 10. Gorenstein rings, local duality, and the direct summand conjecture; 11. Frobenius and big Cohen-Macauley modules; 12. Big Cohen-Macaulay modules in equal charecteristic 0; 13. Uses of big Cohen-Maculay Modules.

Erscheint lt. Verlag 6.9.1990
Reihe/Serie London Mathematical Society Lecture Note Series
Verlagsort Cambridge
Sprache englisch
Maße 152 x 228 mm
Gewicht 455 g
Themenwelt Mathematik / Informatik Mathematik Algebra
ISBN-10 0-521-31526-3 / 0521315263
ISBN-13 978-0-521-31526-5 / 9780521315265
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich