Ordinary Differential Equations: Basics and Beyond - David G. Schaeffer, John W. Cain

Ordinary Differential Equations: Basics and Beyond

Buch | Hardcover
542 Seiten
2016 | 1st ed. 2016
Springer-Verlag New York Inc.
978-1-4939-6387-4 (ISBN)
90,94 inkl. MwSt
This book develops the theory of ordinary differential equations (ODEs), starting from an introductory level (with no prior experience in ODEs assumed) through to a graduate-level treatment of the qualitative theory, including bifurcation theory (but not chaos).  While proofs are rigorous, the exposition is reader-friendly, aiming for the informality of face-to-face interactions. 
A unique feature of this book is the integration of rigorous theory with numerous applications of scientific interest.  Besides providing motivation, this synthesis clarifies the theory and enhances scientific literacy. Other features include:  (i) a wealth of exercises at various levels, along with commentary that explains why they matter; (ii) figures with consistent color conventions to identify nullclines, periodic orbits, stable and unstable manifolds; and (iii) a dedicated website with software templates, problem solutions, and other resources supporting thetext (www.math.duke.edu/ode-book). 
Given its many applications, the book may be used comfortably in science and engineering courses as well as in mathematics courses.  Its level is accessible to upper-level undergraduates but still appropriate for graduate students. The thoughtful presentation, which anticipates many confusions of beginning students, makes the book suitable for a teaching environment that emphasizes self-directed, active learning (including the so-called inverted classroom).

David G. Schaeffer is Professor of Mathematics at Duke University.  His research interests include partial differential equations and granular flow.   John W. Cain is Professor of Mathematics at Harvard University. His background is in application-oriented mathematics with interest in applications to medicine, biology, and biochemistry.

Introduction.- Linear Systems with Constant Coefficients.- Nonlinear Systems: Local Theory.- Nonlinear Systems: Global Theory.- Nondimensionalization and Scaling.- Trajectories Near Equilibria.- Oscillations in ODEs.- Bifurcation from Equilibria.- Examples of Global Bifurcation.- Epilogue.- Appendices.

Erscheinungsdatum
Reihe/Serie Texts in Applied Mathematics ; 65
Zusatzinfo 61 Illustrations, color; 78 Illustrations, black and white; XXX, 542 p. 139 illus., 61 illus. in color.
Verlagsort New York
Sprache englisch
Maße 178 x 254 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Physik / Astronomie
ISBN-10 1-4939-6387-2 / 1493963872
ISBN-13 978-1-4939-6387-4 / 9781493963874
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch (2024)
Springer Vieweg (Verlag)
37,99
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00