Commutative Ring Theory -

Commutative Ring Theory

Proceedings of the Ii International Conference
Buch | Softcover
488 Seiten
1996
Crc Press Inc (Verlag)
978-0-8247-9815-4 (ISBN)
239,95 inkl. MwSt
Presents the proceedings of the Second International Conference on Commutative Ring Theory in Fes, Morocco. The text details developments in commutative algebra, highlighting the theory of rings and ideals. It explores commutative algebra's connections with and applications to topological algebra and algebraic geometry.

Paul-Jean Cahen, Marco Fontana, Evan Houston, Salah-Eddine Kabbaj

Group rings R[G] with 4-generated ideals when R is an Artinian principal ideal ring; quotients of unit groups of commutative rings; some remarks on G-noetherian rings; some remarks on the ring R; factorization in K[S]; pseudo-valuation rings; some factorization properties of A+XB[X] domains; on spectral binary relation; Puiseux's theorem for generalized power series field; the first braided homology group; ring isomorphisms of Jordan-Banach algebras; nonfinite heights; on weakly semi-Steinitz rings; the dimension of tensor products of AF-rings; the special trace property; Krull and valuative dimension of the Serre conjecture ring Rn;Skolem properties for several indeterminates; communitativity of normed algebras satisfying Ex2=Ex for every x; mixed grading on polynomial rings; canonical module and one-dimensional analytically irreducible Arf domains; filtrations, Pruferian closure relative to a module; on minimal generating sets of modules over a special principal ideal ring; the expected weighted dimension of a sum of vector spaces; N-coherent rings and modules; on Braided homology. (Part contents).

Erscheint lt. Verlag 22.10.1996
Reihe/Serie Lecture Notes in Pure and Applied Mathematics
Verlagsort Bosa Roca
Sprache englisch
Maße 210 x 280 mm
Gewicht 816 g
Themenwelt Mathematik / Informatik Mathematik Algebra
ISBN-10 0-8247-9815-5 / 0824798155
ISBN-13 978-0-8247-9815-4 / 9780824798154
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich