Collected Papers V
Springer International Publishing (Verlag)
978-3-319-32547-7 (ISBN)
120 of Shimura's most important papers are collected in five volumes. Volume V contains his mathematical papers from 2002 onwards and some notes to the articles.
lt;br />
List of publications.- [02] The representation of integers as sums of squares.- [04] Inhomogeneous quadratic forms and triangular numbers.- [06a] Quadratic Diophantine equations and orders in quaternion algebras.- [06b] Quadratic Diophantine equations, the class number, and the mass formula.- [06c] Integer-valued quadratic forms and quadratic Diophantine equations.- [06d] Classification, construction, and similitudes of quadratic forms.- [08a] Classification of integer-valued symmetric forms.- [08b] The critical values of certain Dirichlet series.- [08c] Arithmetic of Hermitian forms.- [10] The critical values of generalizations of the Hurwitz zeta function.- [06e] Some remarks and open problems on the Woods Hole fixed point formula.
Erscheinungsdatum | 25.07.2016 |
---|---|
Reihe/Serie | Springer Collected Works in Mathematics |
Zusatzinfo | XVI, 278 p. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Algebraic Geometry • automorphic functions • Dirichlet series • Eichler-Shimura congruence relation • Eichler–Shimura congruence relation • Eichler-Shimura isomorphism • Eichler–Shimura isomorphism • hermitian forms • Hurwitz zeta function • inhomogeneous quadratic forms • integer-valued symmetric forms • Lie Theory • mathematics and statistics • modular curves • modularity theorem • Number Theory • Quadratic Diophantine equations • symmetric forms • Woods Hole fixed point formula |
ISBN-10 | 3-319-32547-7 / 3319325477 |
ISBN-13 | 978-3-319-32547-7 / 9783319325477 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich