Stochastic Neuron Models (eBook)
X, 75 Seiten
Springer International Publishing (Verlag)
978-3-319-26911-5 (ISBN)
Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. She received a Ph.D. in mathematics from the University of Wisconsin in 1963. She has published extensively in several areas of probability and its applications, including stochastic processes, random fields, and asymptotic statistics for stochastic processes. She has also authored the following books: Contiguity and the Statistical Invariance Principle (1985, Philadelphia: Gordon and Breach), (with A.N. Shiryaev); Markov Fields over Countable Partially Ordered Sets: Extrema and Splitting (1994, Providence, RI: American Mathematical Society), (with I.,V. Evstigneev), 1994; and A guide to chi-squared testing (1996, New York: Wiley), (with M.S. Nikulin). Her current work centers around stochastic dynamical systems, and, in particular, stochastic neural dynamics.
Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain Research Centre at the University of British Columbia. He received a Ph.D. from Duke University in 1971, where he studied experimental psychology and mathematics. He has published many research articles and book chapters in psychophysics, cognitive neuroscience, biophysics, and computational neuroscience. He has also authored several books: Sensation and Perception (now in its 6th edition, 2004, Hoboken, NJ: Wiley), (with S. Coren and J.T. Enns), Dynamical Cognitive Science (2001, Cambridge, MA: MIT Press), and Orienting of Attention (2008, New York: Oxford University Press; with Richard D. Wright). His current work is concerned with issues in (i) the cognitive neuroscience of attention, memory, reading, and consciousness, (ii) biophysics and psychophysics of stochastic facilitation, (iii) mathematical and computer modeling of neuronal oscillations and synchronization, and (iv) applications of nonlinear dynamical systems theory in cognitive neuroscience.
Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. She received a Ph.D. in mathematics from the University of Wisconsin in 1963. She has published extensively in several areas of probability and its applications, including stochastic processes, random fields, and asymptotic statistics for stochastic processes. She has also authored the following books: Contiguity and the Statistical Invariance Principle (1985, Philadelphia: Gordon and Breach), (with A.N. Shiryaev); Markov Fields over Countable Partially Ordered Sets: Extrema and Splitting (1994, Providence, RI: American Mathematical Society), (with I.,V. Evstigneev), 1994; and A guide to chi-squared testing (1996, New York: Wiley), (with M.S. Nikulin). Her current work centers around stochastic dynamical systems, and, in particular, stochastic neural dynamics. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain Research Centre at the University of British Columbia. He received a Ph.D. from Duke University in 1971, where he studied experimental psychology and mathematics. He has published many research articles and book chapters in psychophysics, cognitive neuroscience, biophysics, and computational neuroscience. He has also authored several books: Sensation and Perception (now in its 6th edition, 2004, Hoboken, NJ: Wiley), (with S. Coren and J.T. Enns), Dynamical Cognitive Science (2001, Cambridge, MA: MIT Press), and Orienting of Attention (2008, New York: Oxford University Press; with Richard D. Wright). His current work is concerned with issues in (i) the cognitive neuroscience of attention, memory, reading, and consciousness, (ii) biophysics and psychophysics of stochastic facilitation, (iii) mathematical and computer modeling of neuronal oscillations and synchronization, and (iv) applications of nonlinear dynamical systems theory in cognitive neuroscience.
Introduction.- Single Neuron Models.- Population and Subpopulation Models.- Spatially-structured Neural Systems.- The Bigger Picture.
Erscheint lt. Verlag | 2.2.2016 |
---|---|
Reihe/Serie | Mathematical Biosciences Institute Lecture Series |
Mathematical Biosciences Institute Lecture Series | |
Stochastics in Biological Systems | Stochastics in Biological Systems |
Zusatzinfo | X, 75 p. 25 illus., 13 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Medizin / Pharmazie ► Allgemeines / Lexika | |
Technik | |
Schlagworte | Excitation-inhibition interaction • Model neuron • neural system • Reaction-diffusion • Stochastic Facilitation • Stochasticity • Synchronization |
ISBN-10 | 3-319-26911-9 / 3319269119 |
ISBN-13 | 978-3-319-26911-5 / 9783319269115 |
Haben Sie eine Frage zum Produkt? |
Größe: 2,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich