Combinatorial Number Theory
A Treatise on Growth, Based on the Goodstein-Skolem Hierarchy
Seiten
1995
Edwin Mellen Press Ltd (Verlag)
978-0-7734-9085-7 (ISBN)
Edwin Mellen Press Ltd (Verlag)
978-0-7734-9085-7 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
The science of growth is arithmetic in constitution. By drawing on the technical literature (from the 18th century onward), this monograph seeks to expose the deep combinatorial foundations of the theory. It also contains ideas of mathematical logic.
The science of growth is arithmetic in constitution. By drawing on the technical literature (from the 18th century onward), this monograph seeks to expose the deep combinatorial foundations of the theory. It contains ideas of mathematical logic, including the finitary concept of normal tree, and the feather diagram of a hierarchy. Central to the book is a proof of Birkhoff's descending chain condition, as it arises in a diagonalization of mathematical induction. At no point is the vexed axiomatic of choice used. Contingent on the above reductions are, for example, an acceptable Gentzen-type proof of freedom from contradiction for first-order arithmetic and combinatorial relations apparent at the centre of logic. These include an infinite product first studied by A. Cayley, and a subtle property of the Cantor normal form, contained in an exponential identity of G. Polya.
The science of growth is arithmetic in constitution. By drawing on the technical literature (from the 18th century onward), this monograph seeks to expose the deep combinatorial foundations of the theory. It contains ideas of mathematical logic, including the finitary concept of normal tree, and the feather diagram of a hierarchy. Central to the book is a proof of Birkhoff's descending chain condition, as it arises in a diagonalization of mathematical induction. At no point is the vexed axiomatic of choice used. Contingent on the above reductions are, for example, an acceptable Gentzen-type proof of freedom from contradiction for first-order arithmetic and combinatorial relations apparent at the centre of logic. These include an infinite product first studied by A. Cayley, and a subtle property of the Cantor normal form, contained in an exponential identity of G. Polya.
Zusatzinfo | diagrams, bibliography, index |
---|---|
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie |
Mathematik / Informatik ► Mathematik ► Graphentheorie | |
Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre | |
ISBN-10 | 0-7734-9085-X / 077349085X |
ISBN-13 | 978-0-7734-9085-7 / 9780773490857 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Sieben ausgewählte Themenstellungen
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
64,95 €
unlock your imagination with the narrative of numbers
Buch | Softcover (2024)
Advantage Media Group (Verlag)
19,90 €
Seltsame Mathematik - Enigmatische Zahlen - Zahlenzauber
Buch | Softcover (2024)
BoD – Books on Demand (Verlag)
20,00 €