5G and Beyond Wireless Communication Networks - Haijian Sun, Rose Qingyang Hu, Yi Qian

5G and Beyond Wireless Communication Networks

Buch | Hardcover
208 Seiten
2023
Wiley-IEEE Press (Verlag)
978-1-119-08945-2 (ISBN)
95,02 inkl. MwSt
This book looks at the recent progress of research and development for 5G mobile wireless networks, covering related topics on fundamental 5G requirements and enabling technologies.
5G and Beyond Wireless Communication Networks

A comprehensive and up-to-date survey of 5G technologies and applications

In 5G and Beyond Wireless Communication Networks, a team of distinguished researchers deliver an expert treatment of the technical details of modern 5G wireless networks and the performance gains they make possible. The book examines the recent progress in research and development in the area, covering related topics on fundamental 5G requirements and its enabling technologies.

The authors survey 5G service architecture and summarize enabling technologies, including highly dense small cell and heterogeneous networks, device-to-device communications underlaying cellular networks, fundamentals of non-orthogonal multiple access in 5G new radio and its applications. Readers will also find:



A thorough introduction to 5G wireless networks, including discussions of anticipated growth in mobile data traffic
Comprehensive explorations of dense small cell and heterogeneous networks
Practical discussions of the most recent developments in 5G research and enabling technologies
Recent advancement of non-orthogonal multiple access and its role in current and future wireless systems

Perfect for graduate students, professors, industry professionals, and engineers with an interest in wireless communication, 5G and Beyond Wireless Communication Networks will also benefit undergraduate and graduate students and researchers seeking an up-to-date and accessible new resource about 5G networks.

Haijian Sun, PhD, is an Assistant Professor in the School of Electrical and Computer Engineering at the University of Georgia in Athens, USA. His research interests include wireless communications for 5G and beyond, efficient edge computing, wireless security, and wireless for distributed learning. Rose Qingyang Hu, PhD, is a Professor in the Department of Electrical and Computer Engineering at Utah State University in Logan, USA. Her research interests include next-generation wireless communications, wireless network design and optimization, and more. Yi Qian, PhD, is a Professor in the Department of Electrical and Computer Engineering at the University of Nebraska-Lincoln in Omaha, USA. His research interests include cyber security and communication network security, computer networks, and wireless networks.

About the Authors xi

Preface xiii

Acknowledgments xv

1 Introduction to 5G and Beyond Network 1

1.1 5G and Beyond System Requirements 1

1.1.1 Technical Challenges 2

1.2 Enabling Technologies 3

1.2.1 5G New Radio 3

1.2.1.1 Non-orthogonal Multiple Access (NOMA) 3

1.2.1.2 Channel Codes 5

1.2.1.3 Massive MIMO 5

1.2.1.4 Other 5G NR Techniques 6

1.2.2 Mobile Edge Computing (MEC) 6

1.2.3 Hybrid and Heterogeneous Communication Architecture for Pervasive IoTs 7

1.3 Book Outline 8

2 5G Wireless Networks with Underlaid D2D Communications 11

2.1 Background 11

2.1.1 MU-MIMO 11

2.1.2 D2D Communication 11

2.1.3 MU-MIMO and D2D in 5G 12

2.2 NOMA-Aided Network with Underlaid D2D 12

2.3 NOMA with SIC and Problem Formation 14

2.3.1 NOMA with SIC 14

2.3.2 Problem Formation 15

2.4 Precoding and User Grouping Algorithm 15

2.4.1 Zero-Forcing Beamforming 16

2.4.1.1 First ZF Precoding 16

2.4.1.2 Second ZF Precoding 16

2.4.2 User Grouping and Optimal Power Allocation 16

2.4.2.1 First ZF Precoding 17

2.4.2.2 Second ZF Precoding 18

2.5 Numerical Results 18

2.6 Summary 19

3 5G NOMA-Enabled Wireless Networks 21

3.1 Background 21

3.2 Error Propagation in NOMA 22

3.3 SIC and Problem Formulation 22

3.3.1 SIC with Error Propagation 23

3.3.2 Problem Formation 24

3.4 Precoding and Power Allocation 25

3.4.1 Precoding Design 25

3.4.2 Case Studies for Power Allocation 26

3.4.2.1 Case I 26

3.4.2.2 Case II 27

3.5 Numerical Results 27

3.6 Summary 30

4 NOMA in Relay and IoT for 5G Wireless Networks 31

4.1 Outage Probability Study in a NOMA Relay System 31

4.1.1 Background 31

4.1.2 System Model 32

4.1.2.1 NOMA Cooperative Scheme 32

4.1.2.2 NOMA TDMA Scheme 34

4.1.3 Outage Probability Analysis 35

4.1.3.1 Outage Probability in NOMA Cooperative Scheme 35

4.1.4 Outage Probability in NOMA TDMA Scheme 36

4.1.5 Outage Probability with Error Propagation in SIC 37

4.1.5.1 Outage Probability in NOMA Cooperative Scheme with EP 38

4.1.5.2 Outage Probability in NOMA TDMA Scheme with EP 38

4.1.6 Numerical Results 39

4.2 NOMA in a mmWave-Based IoT Wireless System with SWIPT 41

4.2.1 Introduction 41

4.2.2 System Model 41

4.2.2.1 Phase 1 Transmission 42

4.2.2.2 Phase 2 Transmission 44

4.2.3 Outage Analysis 45

4.2.3.1 UE 1 Outage Probability 45

4.2.3.2 UE 2 Outage Probability 45

4.2.3.3 Outage at High SNR 47

4.2.3.4 Diversity Analysis for UE 2 47

4.2.4 Numerical Results 47

4.2.5 Summary 48

5 Robust Beamforming in NOMA Cognitive Radio Networks: Bounded CSI 51

5.1 Background 51

5.1.1 RelatedWork and Motivation 52

5.1.1.1 Linear EH Model 52

5.1.1.2 Non-linear EH Model 53

5.1.2 Contributions 53

5.2 System and Energy Harvesting Models 54

5.2.1 System Model 54

5.2.2 Non-linear EH Model 55

5.2.3 Bounded CSI Error Model 55

5.2.3.1 NOMA Transmission 56

5.3 Power Minimization-Based Problem Formulation 56

5.3.1 Problem Formulation 57

5.3.2 Matrix Decomposition 59

5.4 Maximum Harvested Energy Problem Formulation 60

5.4.1 Complexity Analysis 61

5.5 Numerical Results 62

5.5.1 Power Minimization Problem 62

5.5.2 Energy Harvesting Maximization Problem 64

5.6 Summary 67

6 Robust Beamforming in NOMA Cognitive Radio Networks: Gaussian CSI 69

6.1 Gaussian CSI Error Model 69

6.2 Power Minimization-Based Problem Formulation 69

6.2.1 Bernstein-Type Inequality I 70

6.2.2 Bernstein-Type Inequality II 71

6.3 Maximum Harvested Energy Problem Formulation 72

6.3.1 Complexity Analysis 73

6.4 Numerical Results 73

6.4.1 Power Minimization Problem 74

6.4.2 Energy Harvesting Maximization Problem 76

6.5 Summary 79

7 Mobile Edge Computing in 5G Wireless Networks 81

7.1 Background 81

7.2 System Model 82

7.2.1 Data Offloading 83

7.2.2 Local Computing 83

7.3 Problem Formulation 83

7.3.1 Update pk, tk, and fk 85

7.3.2 Update Lagrange Multipliers 86

7.3.3 Update Auxiliary Variables 86

7.3.4 Complexity Analysis 87

7.4 Numerical Results 87

7.5 Summary 90

8 Toward Green MEC Offloading with Security Enhancement 91

8.1 Background 91

8.2 System Model 92

8.2.1 Secure Offloading 92

8.2.2 Local Computing 93

8.2.3 Receiving Computed Results 93

8.2.4 Computation Efficiency in MEC Systems 93

8.3 Computation Efficiency Maximization with Active Eavesdropper 94

8.3.1 SCA-Based Optimization Algorithm 94

8.3.2 Objective Function 95

8.3.3 Proposed Solution to P4 with given (λΚ, βΚ) 96

8.3.4 Update (λΚ, βΚ) 97

8.4 Numerical Results 97

8.5 Summary 100

9 Wireless Systems for Distributed Machine Learning 101

9.1 Background 101

9.2 System Model 102

9.2.1 FL Model Update 102

9.2.2 Gradient Quantization 104

9.2.3 Gradient Sparsification 104

9.3 FL Model Update with Adaptive NOMA Transmission 104

9.3.1 Uplink NOMA Transmission 104

9.3.2 NOMA Scheduling 105

9.3.3 Adaptive Transmission 106

9.4 Scheduling and Power Optimization 107

9.4.1 Problem Formulation 107

9.5 Scheduling Algorithm and Power Allocation 108

9.5.1 Scheduling Graph Construction 108

9.5.2 Optimal scheduling Pattern 109

9.5.3 Power Allocation 110

9.6 Numerical Results 111

9.7 Summary 114

10 Secure Spectrum Sharing with Machine Learning: An Overview 115

10.1 Background 115

10.1.1 SS: A Brief History 116

10.1.2 Security Issues in SS 118

10.2 ML-Based Methodologies for SS 119

10.2.1 ML-Based CRN 119

10.2.1.1 Spectrum Sensing 120

10.2.1.2 Spectrum Selection 122

10.2.1.3 Spectrum Access 123

10.2.1.4 Spectrum Handoff 125

10.2.2 Database-Assisted SS 125

10.2.2.1 ML-Based EZ Optimization 126

10.2.2.2 Incumbent Detection 126

10.2.2.3 Channel Selection and Transaction 127

10.2.3 ML-Based LTE-U/LTE-LAA 127

10.2.3.1 ML-Based LBT Methods 128

10.2.3.2 ML-Based Duty Cycle Methods 129

10.2.3.3 Game-Theory-Based Methods 129

10.2.3.4 Distributed-Algorithm-Based Methods 130

10.2.4 Ambient Backscatter Networks 131

10.2.4.1 Information Extraction 131

10.2.4.2 Operating Mode Selection and User Coordination 132

10.2.4.3 AmBC-CR Methods 133

10.3 Summary 134

11 Secure Spectrum Sharing with Machine Learning: Methodologies 135

11.1 Security Concerns in SS 135

11.1.1 Primary User Emulation Attack 135

11.1.2 Spectrum Sensing Data Falsification Attack 135

11.1.3 Jamming Attacks 136

11.1.4 Intercept/Eavesdrop 137

11.1.5 Privacy Issues in Database-Assisted SS Systems 137

11.2 ML-Assisted Secure SS 138

11.2.1 State-of-the-Art Methods of Defense Against PUE Attack 138

11.2.1.1 ML-Based Detection Methods 138

11.2.1.2 Robust Detection Methods 140

11.2.1.3 ML-Based Attack Methods 141

11.2.2 State-of-the-Art Methods of Defense Against SSDF Attack 142

11.2.2.1 Outlier Detection Methods 143

11.2.2.2 Reputation-Based Detection Methods 143

11.2.2.3 SSDF and PUE Combination Attacks 144

11.2.3 State-of-the-Art Methods of Defense Against Jamming Attacks 144

11.2.3.1 ML-Based Anti-Jamming Methods 145

11.2.3.2 Attacker Enhanced Anti-Jamming Methods 146

11.2.3.3 AmBC Empowered Anti-Jamming Methods 148

11.2.4 State-of-the-Art Methods of Defense Against Intercept/Eavesdrop 149

11.2.4.1 RL-Based Anti-Eavesdropping Methods 149

11.2.5 State-of-the-Art ML-Based Privacy Protection Methods 150

11.2.5.1 Privacy Protection for PUs in SS Networks 150

11.2.5.2 Privacy Protection for SUs in SS Networks 151

11.2.5.3 Privacy Protection for ML Algorithms 151

11.3 Summary 153

12 Open Issues and Future Directions for 5G and Beyond Wireless Networks 155

12.1 Joint Communication and Sensing 155

12.2 Space-Air-Ground Communication 155

12.3 Semantic Communication 156

12.4 Data-Driven Communication System Design 156

Appendix A Proof of Theorem 5.1 157

Bibliography 161

Index 181

Erscheinungsdatum
Reihe/Serie IEEE Press
Sprache englisch
Maße 170 x 244 mm
Gewicht 510 g
Themenwelt Mathematik / Informatik Informatik Netzwerke
Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
ISBN-10 1-119-08945-X / 111908945X
ISBN-13 978-1-119-08945-2 / 9781119089452
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
das umfassende Handbuch für den Einstieg in die Netzwerktechnik

von Martin Linten; Axel Schemberg; Kai Surendorf

Buch | Hardcover (2023)
Rheinwerk (Verlag)
29,90
das Praxisbuch für Admins und DevOps-Teams

von Michael Kofler

Buch | Hardcover (2023)
Rheinwerk (Verlag)
39,90