Knowledge Transfer between Computer Vision and Text Mining

Similarity-based Learning Approaches
Buch | Hardcover
XXIV, 250 Seiten
2016 | 1st ed. 2016
Springer International Publishing (Verlag)
978-3-319-30365-9 (ISBN)

Lese- und Medienproben

Knowledge Transfer between Computer Vision and Text Mining - Radu Tudor Ionescu, Marius Popescu
106,99 inkl. MwSt
This ground-breaking text/reference divergesfrom the traditional view that computer vision (for image analysis) and stringprocessing (for text mining) are separate and unrelated fields of study,propounding that images and text can be treated in a similar manner for thepurposes of information retrieval, extraction and classification. Highlightingthe benefits of knowledge transfer between the two disciplines, the textpresents a range of novel similarity-based learning (SBL) techniques founded onthis approach. Topics and features: describes a variety of SBL approaches,including nearest neighbor models, local learning, kernel methods, andclustering algorithms; presents a nearest neighbor model based on a noveldissimilarity for images; discusses a novel kernel for (visual) wordhistograms, as well as several kernels based on a pyramid representation; introducesan approach based on string kernels for native language identification; containslinks for downloading relevant open source code.

Dr. Radu Tudor Ionescu is an Assistant Professor in the Department of Computer Science at the University of Bucharest, Romania. Dr. Marius Popescu is an Associate Professor at the same institution.

Motivation and Overview.- Learning Based on Similarity.- Part I: Knowledge Transfer from Text Mining to Computer Vision.- State of the Art Approaches for Image Classification.- Local Displacement Estimation of Image Patches and Textons.- Object Recognition with the Bag of Visual Words Model.- Part II: Knowledge Transfer from Computer Vision to Text Mining.- State of the Art Approaches for String and Text Analysis.- Local Rank Distance.- Native Language Identification with String Kernels.- Spatial Information in Text Categorization.- Conclusions.

Erscheinungsdatum
Reihe/Serie Advances in Computer Vision and Pattern Recognition
Zusatzinfo XXIV, 250 p. 42 illus., 33 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte artificial intelligence (incl. robotics) • Computer Science • computer vision • data mining and knowledge discovery • image processing and computer vision • Kernel Methods • Knowledge Transfer • similarity-based learning • Text Mining
ISBN-10 3-319-30365-1 / 3319303651
ISBN-13 978-3-319-30365-9 / 9783319303659
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90