Auxiliary Polynomials in Number Theory - David Masser

Auxiliary Polynomials in Number Theory

(Autor)

Buch | Hardcover
368 Seiten
2016
Cambridge University Press (Verlag)
978-1-107-06157-6 (ISBN)
159,95 inkl. MwSt
A unified account of various aspects of a simple, yet powerful, classical method, illustrated by applications in several areas of number theory. These include diophantine approximation and transcendence, along with exponential sums and counting problems in both finite fields and the field of rationals. Recommended for graduates and professionals.
This unified account of various aspects of a powerful classical method, easy to understand in its simplest forms, is illustrated by applications in several areas of number theory. As well as including diophantine approximation and transcendence, which were mainly responsible for its invention, the author places the method in a broader context by exploring its application in other areas, such as exponential sums and counting problems in both finite fields and the field of rationals. Throughout the book, the method is explained in a 'molecular' fashion, where key ideas are introduced independently. Each application is the most elementary significant example of its kind and appears with detailed references to subsequent developments, making it accessible to advanced undergraduates as well as postgraduate students in number theory or related areas. It provides over 700 exercises both guiding and challenging, while the broad array of applications should interest professionals in fields from number theory to algebraic geometry.

David Masser is Emeritus Professor in the Department of Mathematics and Computer Science at the University of Basel, Switzerland. He started his career with Alan Baker, which gave him a grounding in modern transcendence theory and began his fascination with the method of auxiliary polynomials. His subsequent interest in applying the method to areas outside transcendence, which involved mainly problems of zero estimates, culminated in his works with Gisbert Wüstholz on isogeny and polarization estimates for abelian varieties, for which he was elected a Fellow of the Royal Society in 2005. This expertise proved beneficial in his more recent works with Umberto Zannier on problems of unlikely intersections, where zero estimates make a return appearance.

Introduction; 1. Prologue; 2. Irrationality I; 3. Irrationality II - Mahler's method; 4. Diophantine equations - Runge's method; 5. Irreducibility; 6. Elliptic curves - Stepanov's method; 7. Exponential sums; 8. Irrationality measures I - Mahler; 9. Integer-valued entire functions I - Pólya; 10. Integer-valued entire functions II - Gramain; 11. Transcendence I - Mahler; 12. Irrationality measures II - Thue; 13. Transcendence II - Hermite–Lindemann; 14. Heights; 15. Equidistribution - Bilu; 16. Height lower bounds - Dobrowolski; 17. Height upper bounds; 18. Counting - Bombieri–Pila; 19. Transcendence III - Gelfond–Schneider–Lang; 20. Elliptic functions; 21. Modular functions; 22. Algebraic independence; Appendix: Néron's square root; References; Index.

Erscheinungsdatum
Reihe/Serie Cambridge Tracts in Mathematics
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Maße 158 x 236 mm
Gewicht 700 g
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 1-107-06157-1 / 1107061571
ISBN-13 978-1-107-06157-6 / 9781107061576
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Sieben ausgewählte Themenstellungen

von Hartmut Menzer; Ingo Althöfer

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
64,95
unlock your imagination with the narrative of numbers

von Dave Kester; Mikaela Ashcroft

Buch | Softcover (2024)
Advantage Media Group (Verlag)
19,90
Seltsame Mathematik - Enigmatische Zahlen - Zahlenzauber

von Klaus Scharff

Buch | Softcover (2024)
BoD – Books on Demand (Verlag)
20,00