Für diesen Artikel ist leider kein Bild verfügbar.

The Classification of Countable Homogeneous Directed Graphs and Countable Homogeneous n-tournaments

Buch | Softcover
161 Seiten
1998
American Mathematical Society (Verlag)
978-0-8218-0836-8 (ISBN)
69,95 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
Intends to demonstrate the potential of Lachlan's method for systematic use. In this book, Ramsey theoretic methods introduced by Lachlan are applied to classify the countable homogeneous directed graphs. It also features an interface between combinatorics and model theory.
In this book, Ramsey theoretic methods introduced by Lachlan are applied to classify the countable homogeneous directed graphs. This is an uncountable collection, and this book presents the first explicit classification result covering an uncountable family. The author's aim is to demonstrate the potential of Lachlan's method for systematic use. It features: interface between combinatorics and model theory; unusual use of Ramsey's theorem to classify structures; an extension of an already elaborate branch of model theory; and the first monograph on Lachlan's method.

Results and open problems Homogeneous $2$-tournaments Homogeneous $n$-tournaments Homogeneous symmetric graphs Homogeneous directed graphs omitting $I_/infty$ Propositions $16$ to $20$ and MT $2.2$ Homogeneous directed graphs embedding $I_/infty$ Theorems 7.6-7.9 Appendix: Examples for richer languages Bibliography Index of Notation Index.

Erscheint lt. Verlag 1.6.1998
Reihe/Serie Memoirs of the American Mathematical Society
Verlagsort Providence
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Graphentheorie
ISBN-10 0-8218-0836-2 / 0821808362
ISBN-13 978-0-8218-0836-8 / 9780821808368
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95