Link Prediction in Social Networks - Srinivas Virinchi, Pabitra Mitra

Link Prediction in Social Networks

Role of Power Law Distribution
Buch | Softcover
IX, 67 Seiten
2016 | 1st ed. 2016
Springer International Publishing (Verlag)
978-3-319-28921-2 (ISBN)
53,49 inkl. MwSt

Thiswork presents link prediction similarity measures for social networks that exploitthe degree distribution of the networks. In the context of link prediction indense networks, the text proposes similarity measures based on Markov inequalitydegree thresholding (MIDTs), which only consider nodes whose degree is above a thresholdfor a possible link. Also presented are similarity measures based on cliques(CNC, AAC, RAC), which assign extra weight between nodes sharing a greater numberof cliques. Additionally, a locally adaptive (LA) similarity measure isproposed that assigns different weights to common nodes based on the degreedistribution of the local neighborhood and the degree distribution of thenetwork. In the context of link prediction in dense networks, the textintroduces a novel two-phase framework that adds edges to the sparse graph toforma boost graph.

Dr. Virinchi Srinivas is a Graduate Research Assistant in the Department of Computer Science at the University of Maryland, College Park, MD, USA. Dr. Pabitra Mitra is an Associate Professor in the Department of Computer Science and Engineering at the Indian Institute of Technology, Kharagpur, India.

Introduction.- Link Prediction Using Degree Thresholding.- Locally Adaptive Link Prediction.- Two Phase Framework for Link Prediction.- Applications of Link Prediction.- Conclusion.

Erscheinungsdatum
Reihe/Serie SpringerBriefs in Computer Science
Zusatzinfo IX, 67 p. 5 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Netzwerke
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Computer Communication Networks • Computer Science • data mining and knowledge discovery • graph mining • link prediction • Local Neighborhood • Power Law Degree Distribution • Recommender Systems
ISBN-10 3-319-28921-7 / 3319289217
ISBN-13 978-3-319-28921-2 / 9783319289212
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90