Nonlocal Diffusion and Applications - Claudia Bucur, Enrico Valdinoci

Nonlocal Diffusion and Applications

Buch | Softcover
XII, 155 Seiten
2016 | 1st ed. 2016
Springer International Publishing (Verlag)
978-3-319-28738-6 (ISBN)
69,54 inkl. MwSt
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.

Introduction.- 1 A probabilistic motivation.-1.1 The random walk with arbitrarily long jumps.- 1.2 A payoff model.-2 An introduction to the fractional Laplacian.-2.1 Preliminary notions.- 2.2 Fractional Sobolev Inequality and Generalized Coarea Formula.- 2.3 Maximum Principle and Harnack Inequality.- 2.4 An s-harmonic function.- 2.5 All functions are locally s-harmonic up to a small error.- 2.6 A function with constant fractional Laplacian on the ball.- 3 Extension problems.- 3.1 Water wave model.- 3.2 Crystal dislocation.- 3.3 An approach to the extension problem via the Fourier transform.- 4 Nonlocal phase transitions.- 4.1 The fractional Allen-Cahn equation.- 4.2 A nonlocal version of a conjecture by De Giorgi.- 5 Nonlocal minimal surfaces.- 5.1 Graphs and s-minimal surfaces.- 5.2 Non-existence of singular cones in dimension 2 5.3 Boundary regularity.- 6 A nonlocal nonlinear stationary Schrödinger type equation.- 6.1 From the nonlocal Uncertainty Principle to a fractional weighted inequality.- Alternative proofs of some results.- A.1 Another proof of Theorem A.2 Another proof of Lemma 2.3.- References.

"The book under review is a result of a series of lectures given in various places throughout the world. It gives an introduction to the analysis of nonlocal operators, most notably the fractional Laplacian. ... the book does a great job of introducing the topic of nonlocal analysis for every newcomer in the field. It provides a good starting point for doing research and therefore is highly recommended." (Lukasz Plociniczak, Mathematical Reviews, March, 2017)

Erscheinungsdatum
Reihe/Serie Lecture Notes of the Unione Matematica Italiana
Zusatzinfo XII, 155 p. 26 illus., 23 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
Schlagworte 35Q40. • 35R11 • 35S05 • 35S30 • 47B34 • 47G10 • 49Q05 • 74E15 • 82D25 • Calculus of Variations and Optimal Control • Fractional diffusion • fractional Laplacian • Functional Analysis • Integral Transforms, Operational Calculus • mathematics and statistics • Nonlocal minimal surfaces • Nonlocal phase transitions • Nonlocal quantum mechanics • Optimization • Partial differential equations
ISBN-10 3-319-28738-9 / 3319287389
ISBN-13 978-3-319-28738-6 / 9783319287386
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
79,99