Sparse Grids and Applications - Stuttgart 2014 -

Sparse Grids and Applications - Stuttgart 2014

Jochen Garcke, Dirk Pflüger (Herausgeber)

Buch | Hardcover
VIII, 336 Seiten
2016 | 1st ed. 2016
Springer International Publishing (Verlag)
978-3-319-28260-2 (ISBN)
106,99 inkl. MwSt
This volume of LNCSE is a collection of the papers from the proceedings of the third workshop on sparse grids and applications. Sparse grids are a popular approach for the numerical treatment of high-dimensional problems. Where classical numerical discretization schemes fail in more than three or four dimensions, sparse grids, in their different guises, are frequently the method of choice, be it spatially adaptive in the hierarchical basis or via the dimensionally adaptive combination technique. Demonstrating once again the importance of this numerical discretization scheme, the selected articles present recent advances on the numerical analysis of sparse grids as well as efficient data structures. The book also discusses a range of applications, including uncertainty quantification and plasma physics.

Peng Chen and Christoph Schwab: Adaptive Sparse Grid Model Order Reduction for Fast Bayesian Estimation and Inversion.- Fabian Franzelin and Dirk Pflüger: From Data to Uncertainty: An E_cient Integrated Data-Driven Sparse Grid Approach to Propagate Uncertainty.- Helmut Harbrecht and Michael Peters: Combination Technique Based Second Moment Analysis for Elliptic PDEs on Random Domains.- Brendan Harding: Adaptive sparse grids and extrapolation techniques.- Philipp Hupp and Riko Jacob: A Cache-Optimal Alternative to the Unidirectional Hierarchization Algorithm.- Valeriy Khakhutskyy and Markus Hegland: Spatially-Dimension- Adaptive Sparse Grids for Online Learning.- Katharina Kormann and Eric Sonnendrücker: Sparse Grids for the Vlasov-Poisson Equation.- Fabio Nobile, Lorenzo Tamellini, Francesco Tesei and Raul Tempone: An Adaptive Sparse Grid Algorithm for Elliptic PDEs with Lognormal Diffusion Coefficient.- David Pfander, Alexander Heinecke, and Dirk Pflüger: A New Subspace-Based Algorithm for E_cient Spatially Adaptive Sparse Grid Regression, Classification and Multi- Evaluation.- Sharif Rahman, Xuchun Ren, and Vaibhav Yadav: High-Dimensional Stochastic Design Optimization by Adaptive-Sparse Polynomial Dimensional Decomposition.- Jie Shen, Yingwei Wang, and Haijun Yu: E_cient Spectral-Element Methods for the Electronic Schrödinger Equation.- Hoang Tran, Clayton G. Webster, and Guannan Zhang: A Sparse Grid Method for Bayesian Uncertainty Quantification with Application to Large Eddy Simulation Turbulence Models.- Julian Valentin and Dirk Pflüger: Hierarchical Gradient-Based Optimization with BSplines on Sparse Grids.

Erscheinungsdatum
Reihe/Serie Lecture Notes in Computational Science and Engineering
Zusatzinfo VIII, 336 p. 85 illus., 24 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Algorithmen
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Algorithm analysis and problem complexity • combination technique • Computational Mathematics and Numerical Analysis • efficient data structures and algorithms • high-dimensional approximation • mathematics and statistics • sparse grids • uncertainty quantification
ISBN-10 3-319-28260-3 / 3319282603
ISBN-13 978-3-319-28260-2 / 9783319282602
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
29,99
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
32,99