Machine Learning Meets Medical Imaging -

Machine Learning Meets Medical Imaging

First International Workshop, MLMMI 2015, Held in Conjunction with ICML 2015, Lille, France, July 11, 2015, Revised Selected Papers

Kanwal Bhatia, Herve Lombaert (Herausgeber)

Buch | Softcover
X, 105 Seiten
2015 | 1st ed. 2015
Springer International Publishing (Verlag)
978-3-319-27928-2 (ISBN)
42,80 inkl. MwSt

Normal 0 false false false EN-US X-NONE X-NONE

/* Style Definitions */ table.MsoNormalTable{mso-style-name:"Table Normal";mso-tstyle-rowband-size:0;mso-tstyle-colband-size:0;mso-style-noshow:yes;mso-style-priority:99;mso-style-qformat:yes;mso-style-parent:"";mso-padding-alt:0in 5.4pt 0in 5.4pt;mso-para-margin:0in;mso-para-margin-bottom:.0001pt;mso-pagination:widow-orphan;font-size:11.0pt;font-family:"Calibri","sans-serif";mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:"Times New Roman";mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";mso-bidi-theme-font:minor-bidi;}This book constitutes the revised selected papers of theFirst International Workshop on Machine Learning in Medical Imaging, MLMMI2015, held in July 2015 in Lille, France, in conjunction with the 32ndInternational Conference on Machine Learning, ICML 2015.

The 10 papers presented in this volume were carefullyreviewed and selected for inclusion in the book. The papers communicate thespecific needs and nuances of medical imaging to the machine learning communitywhile exposing the medical imaging community to current trends in machinelearning.

 

Retrospectivemotion correction of magnitude-input MR images.- Automatic Brain Localizationin Fetal MRI Using Superpixel Graphs.- Learning Deep Temporal Representationsfor fMRI Brain Decoding.- Modelling Non-Stationary and Non-SeparableSpatio-Temporal Changes in Neurodegeneration via Gaussian Process Convolution.-Improving MRI brain image classification with anatomical regional kernels.- AGraph Based Classification Method for Multiple Sclerosis Clinical Form UsingSupport Vector Machine.- Classification of Alzheimer's Disease usingDiscriminant Manifolds of Hippocampus Shapes.- Transfer Learning for ProstateCancer Mapping Based on Multicentric MR imaging databases.

Erscheinungsdatum
Reihe/Serie Image Processing, Computer Vision, Pattern Recognition, and Graphics
Lecture Notes in Computer Science
Zusatzinfo X, 105 p. 31 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Schlagworte Alzheimer's disease • Applications • Bioinformatics • brain • classification • clinical classification • Computational Biology • computer-aided detection system • Computer Science • computer vision • conference proceedings • Gaussian processes • graph kernel • image processing and computer vision • Informatics • Interpretability • learning • machine learning • Mathematical Analysis • MRI • multi-kernel • Multiple Sclerosis • Research • structural connectome • SVM • transfer learning
ISBN-10 3-319-27928-9 / 3319279289
ISBN-13 978-3-319-27928-2 / 9783319279282
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Modelle für 3D-Druck und CNC entwerfen

von Lydia Sloan Cline

Buch | Softcover (2022)
dpunkt (Verlag)
34,90
Einstieg und Praxis

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2023)
Markt + Technik (Verlag)
19,95
alles zum Drucken, Scannen, Modellieren

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2024)
Markt + Technik Verlag
24,95