Statistical Analysis for High-Dimensional Data -

Statistical Analysis for High-Dimensional Data

The Abel Symposium 2014
Buch | Hardcover
XII, 306 Seiten
2016 | 1st ed. 2016
Springer International Publishing (Verlag)
978-3-319-27097-5 (ISBN)
160,49 inkl. MwSt

This book features research contributions fromThe Abel Symposium on Statistical Analysis for High Dimensional Data, held inNyvågar, Lofoten, Norway, in May 2014.

The focus of the symposium was on statisticaland machine learning methodologies specifically developed for inference in "bigdata" situations, with particular reference to genomic applications. Thecontributors, who are among the most prominent researchers on the theory ofstatistics for high dimensional inference, present new theories and methods, aswell as challenging applications and computational solutions. Specific themesinclude, among others, variable selection and screening, penalised regression,sparsity, thresholding, low dimensional structures, computational challenges,non-convex situations, learning graphical models, sparse covariance andprecision matrices, semi- and non-parametric formulations, multiple testing,classification, factor models, clustering, and preselection.

Highlighting cutting-edge researchand casting light on future research directions, the contributions will benefitgraduate students and researchers in computational biology, statistics and themachine learning community.

Some Themes in High-Dimensional Statistics: A. Frigessi et al.- LaplaceAppoximation in High-Dimensional Bayesian Regression: R. Barber, M. Drton etal.- Preselection in Lasso-Type Analysis for Ultra-High Dimensional GenomicExploration: L.C. Bergersen, I. Glad et al.- Spectral Clustering and Block Models:a Review and a new Algorithm: S. Bhattacharyya et al.- Bayesian HierarchicalMixture Models: L. Bottelo et al.- iBATCGH; Integrative Bayesian Analysis of Transcriptomicand CGH Data: Cassese, M. Vannucci et al.- Models of Random SparseEigenmatrices and Bayesian Analysis of Multivariate Structure: A.J. Cron, M. West.-Combining Single and Paired End RNA-seq Data for Differential Expression Analysis:F. Feng, T.Speed et al.- An Imputation Method for Estimation the Learning Curvein Classification Problems: E. Laber et al.- Baysian Feature Allocation Modelsfor Tumor Heterogeneity: J. Lee, P. Mueller et al.- Bayesian Penalty Mixing:The Case of a Non-Separable Penalty: V. Rockova etal.- Confidence Intervalsfor Maximin Effects in Inhomogeneous Large Scale Data: D. Rothenhausler et al.-Chisquare Confidence Sets in High-Dimensional Regression: S. van de Geer et al. 

Erscheinungsdatum
Reihe/Serie Abel Symposia
Zusatzinfo XII, 306 p. 65 illus., 46 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Bioinformatics • Computational Mathematics and Numerical Analysis • dimension reduction • factor models • high dimensional inference • mathematics and statistics • multiple testing • penelised regression • sparsity • Statistical genomics • statistical inference in high dimensions • Statistical Theory and Methods • Statistics and Computing/Statistics Programs • Statistics for Engineering, Physics, Computer Scie • Statistics for Life Sciences, Medicine, Health Sci • Thresholding
ISBN-10 3-319-27097-4 / 3319270974
ISBN-13 978-3-319-27097-5 / 9783319270975
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich