Innovative Statistical Methods for Public Health Data (eBook)
XIV, 351 Seiten
Springer International Publishing (Verlag)
978-3-319-18536-1 (ISBN)
Ding-Geng (Din) Chen (PhD in Statistics from University of Guelph) is a professor in biostatistics at the University of Rochester. Previously, he was the Karl E. Peace endowed eminent scholar chair in biostatistics from the Jiann-Ping Hsu College of Public Health at the Georgia Southern University. He is also a senior biostatistics consultant for biopharmaceuticals and government agencies with extensive expertise in clinical trials and bioinformatics. He has more than 100-refereed professional publications and co-authored five books in biostatistics. Professor Chen was Section Chair (2011-2014) of Applied Public Health Statistics, American Public Health Association. Professor Jeffrey Wilson was Section Chair (2010-2013) of Applied Public Health Statistics, American Public Health Association. He was also a former Director of Biostatistics Core in the NIH Center Alzheimer. He is also the former Director of the School of Health Management and Policy. He is an Associate Editor for The JMIG and Chair of the Editorial Board of AJPH. His research experience includes grants from the NSF, USDA and NIH. He has published several articles in leading journals in Statistics and Healthcare. He teaches statistics at the graduate level in topics including GLM and GLIMMIX.
Ding-Geng (Din) Chen (PhD in Statistics from University of Guelph) is a professor in biostatistics at the University of Rochester. Previously, he was the Karl E. Peace endowed eminent scholar chair in biostatistics from the Jiann-Ping Hsu College of Public Health at the Georgia Southern University. He is also a senior biostatistics consultant for biopharmaceuticals and government agencies with extensive expertise in clinical trials and bioinformatics. He has more than 100-refereed professional publications and co-authored five books in biostatistics. Professor Chen was Section Chair (2011-2014) of Applied Public Health Statistics, American Public Health Association. Professor Jeffrey Wilson was Section Chair (2010-2013) of Applied Public Health Statistics, American Public Health Association. He was also a former Director of Biostatistics Core in the NIH Center Alzheimer. He is also the former Director of the School of Health Management and Policy. He is an Associate Editor for The JMIG and Chair of the Editorial Board of AJPH. His research experience includes grants from the NSF, USDA and NIH. He has published several articles in leading journals in Statistics and Healthcare. He teaches statistics at the graduate level in topics including GLM and GLIMMIX.
Part 1: Modelling Clustered Data.- Methods for Analyzing Secondary Outcomes in Public Health Case Control Studies.- Controlling for Population Density Using Clustering and Data Weighting Techniques When Examining Social Health and Welfare Problems.- On the Inference of Partially Correlated Data with Applications to Public Health Issues.- Modeling Time-Dependent Covariates in Longitudinal Data Analyses.- Solving Probabilistic Discrete Event Systems with Moore-Penrose Generalized Inverse Matrix Method to Extract Longitudinal Characteristics from Cross-Sectional Survey Data.- Part II: Modelling Incomplete or Missing Data.- On the Effects of Structural Zeros in Regression Models.- Modeling Based on Progressively Type-I Interval Censored Sample.- Techniques for Analyzing Incomplete Data in Public Health Research.- A Continuous Latent Factor Model for Non-ignorable Missing Data.- Part III: Healthcare Research Models.- Health Surveillance.- Standardization and Decomposition Analysis: A Useful Analytical Method for Outcome Difference, Inequality and Disparity Studies.- Cusp Catastrophe Modeling in Medical and Health Research.- On Ranked Set Sampling Variation and its Applications to Public Health Research.- Weighted Multiple Testing Correction for Correlated Endpoints in Survival Data.- Meta-analytic Methods for Public Health Research.
Erscheint lt. Verlag | 31.8.2015 |
---|---|
Reihe/Serie | ICSA Book Series in Statistics | ICSA Book Series in Statistics |
Zusatzinfo | XIV, 351 p. 45 illus., 22 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
Studium ► 1. Studienabschnitt (Vorklinik) ► Biochemie / Molekularbiologie | |
Schlagworte | causal inference • Health surveillance • Incomplete or missing data • Public health statistics • Standardization and decomposition analysis (SDA) • Statistics biomedical research |
ISBN-10 | 3-319-18536-5 / 3319185365 |
ISBN-13 | 978-3-319-18536-1 / 9783319185361 |
Haben Sie eine Frage zum Produkt? |
Größe: 5,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich