Text Mining of Web-Based Medical Content (eBook)
284 Seiten
De Gruyter (Verlag)
978-1-61451-976-8 (ISBN)
•Includes Text Mining and Natural Language Processing Methods for extracting information from electronic health records and biomedical literature.
•Analyzes text analytic tools for new media such as online forums, social media posts, tweets and video sharing.
•Demonstrates how to use speech and audio technologies for improving access to online content for the visually impaired.
Text Mining of Web-Based Medical Content examines various approaches to deriving high quality information from online biomedical literature, electronic health records, query search terms, social media posts and tweets. Using some of the latest empirical methods of knowledge extraction, the authors show how online content, generated by both professionals and laypersons, can be mined for valuable information about disease processes, adverse drug reactions not captured during clinical trials, and tropical fever outbreaks. Additionally, the authors show how to perform infromation extraction on a hospital intranet, how to build a social media search engine to glean information about patients' own experiences interacting with healthcare professionals, and how to improve access to online health information.
This volume provides a wealth of timely material for health informatic professionals and machine learning, data mining, and natural language researchers.
Topics in this book include:
•Mining Biomedical Literature and Clinical Narratives
•Medication Information Extraction
•Machine Learning Techniques for Mining Medical Search Queries
•Detecting the Level of Personal Health Information Revealed in Social Media
•Curating Layperson's Personal Experiences with Health Care from Social Media and Twitter
•Health Dialogue Systems for Improving Access to Online Content
•Crowd-based Audio Clips to Improve Online Video Access for the Visually Impaired
•Semantic-based Visual Information Retrieval for Mining Radiographic Image Data
•Evaluating the Importance of Medical Terminology in YouTube Video Titles and Descriptions
Amy Neustein, Founder and CTO, Linguistic Technology Systems, Fort Lee, NJ, USA.
* Includes Text Mining and Natural Language Processing Methods for extracting information from electronic health records and biomedical literature.* Analyzes text analytic tools for new media such as online forums, social media posts, tweets and video sharing.* Demonstrates how to use speech and audio technologies for improving access to online content for the visually impaired. Text Mining of Web-Based Medical Content examines various approaches to deriving high quality information from online biomedical literature, electronic health records, query search terms, social media posts and tweets. Using some of the latest empirical methods of knowledge extraction, the authors show how online content, generated by both professionals and laypersons, can be mined for valuable information about disease processes, adverse drug reactions not captured during clinical trials, and tropical fever outbreaks. Additionally, the authors show how to perform infromation extraction on a hospital intranet, how to build a social media search engine to glean information about patients' own experiences interacting with healthcare professionals, and how to improve access to online health information. This volume provides a wealth of timely material for health informatic professionals and machine learning, data mining, and natural language researchers. Topics in this book include:* Clinical Documents in Electronic Health Records* Summarization Techniques for Online Health Data* Natural Language Processing for Text Mining* Query Expansion Techniques for Tweets* Online Video Data Retrieval of Health-Related Videos* Dengue Fever Outbreaks* Bioemergencies and Social Media Posts* Speech-based Disease Screening for Malaria, Yellow Fever, Typhoid, and Lassa Fever* Audio Access to Online Video Data for the Visually Impaired
lt;!doctype html public "-//w3c//dtd html 4.0 transitional//en">
Amy Neustein, Founder and CTO, Linguistic Technology Systems, Fort Lee, NJ, USA.
Preface
I.Overview
1.The Social Impact of Medical Social Media on the Healthcare Delivery System
2.Demographics and Medical Social Media: What Can We Learn about Various Populations?
3.Differentiating Among Different Social Platforms for Sharing Medical Social Media
II.Mining Methods
4.What Are the Distinguishing Linguistic Characteristics of Medical Social Media Postings that Pose Difficulties for Data Mining
5.Comparing Existing Data Extraction Methods for Mining Medical Content on the Web
6.New Data Mapping Tools for Mining Medical Social Media
III.Future Projections
7.Where is Social Medicine Headed in Next 5-10 Years?
8.The Domino Effect of Improved Data Extraction Methods for Medical Social Media on other Forms of Social Media
Erscheint lt. Verlag | 9.10.2014 |
---|---|
Reihe/Serie | ISSN |
ISSN | |
Speech Technology and Text Mining in Medicine and Health Care | Speech Technology and Text Mining in Medicine and Health Care |
Co-Autor | Johan Bellika, Angel Bravo-Salgado, Marius Brezovan, Dumitru Dan Burdescu, Jedsada Chartree, Joshua C. Denny, Liliana Ferreira, Kambiz Ghazinour, Leif Hanlen, S. Sagar Imambi, Tamara Jimenez, Randi Karlsen, Stan Matwin, Armin R. Mikler, Jose Enrique Borras Morell, Oyelami Olufemi Moses, Cecile Paris, Mario Rodrigues, Vicente Salcedo, Marina Sokolova, Liana Stanescu, Hanna Suominen, António Joaquim S. Teixeira, Keith M. Williams, Hua Xu |
Zusatzinfo | 100 b/w and 20 col. ill. |
Verlagsort | Boston |
Sprache | englisch |
Themenwelt | Geisteswissenschaften ► Philosophie ► Allgemeines / Lexika |
Geisteswissenschaften ► Sprach- / Literaturwissenschaft ► Sprachwissenschaft | |
Mathematik / Informatik ► Informatik | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Maschinenbau | |
Schlagworte | electronic health records • Health Mapping Tools • Health-Related Videos • Relationship Extraction Techniques • Speech-Enabled Web Content. • Speech processing • Summarization Techniques |
ISBN-10 | 1-61451-976-5 / 1614519765 |
ISBN-13 | 978-1-61451-976-8 / 9781614519768 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich