Approximation Theory and Harmonic Analysis on Spheres and Balls
Springer-Verlag New York Inc.
978-1-4939-0131-9 (ISBN)
This book is directed at researchers and advanced graduate students in analysis. Mathematicians who are familiar with Fourier analysis and harmonic analysis will understand many of the concepts that appear in this manuscript: spherical harmonics, the Hardy-Littlewood maximal function, the Marcinkiewicz multiplier theorem, the Riesz transform, and doubling weights are all familiar tools to researchers in this area.
Feng Dai is currently a professor of mathematics at the University of Alberta, and Yuan Xu is currently a professor of mathematics at the University of Oregon.
1 Spherical Harmonics.- 2 Convolution and Spherical Harmonic Expansion.- 3 Littlewood-Paley Theory and Multiplier Theorem.- 4 Approximation on the Sphere.- 5 Weighted Polynomial Inequalities.- 6 Cubature Formulas on Spheres.- 7 Harmonic Analysis Associated to Reflection Groups.- 8 Boundedness of Projection Operator and Cesàro Means.- 9 Projection Operators and Cesàro Means in L^p Spaces.- 10 Weighted Best Approximation by Polynomials.- 11 Harmonic Analysis on the Unit Ball.- 12 Polynomial Approximation on the Unit Ball.- 13 Harmonic Analysis on the Simplex.- 14 Applications.- A Distance, Difference and Integral Formulas.- B Jacobi and Related Orthogonal Polynomials.- References.- Index.- Symbol Index.
Erscheint lt. Verlag | 22.5.2015 |
---|---|
Reihe/Serie | Springer Monographs in Mathematics |
Zusatzinfo | XVIII, 440 p. |
Verlagsort | New York |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
ISBN-10 | 1-4939-0131-1 / 1493901311 |
ISBN-13 | 978-1-4939-0131-9 / 9781493901319 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich