Complex Analysis (eBook)

A Modern First Course in Function Theory

(Autor)

eBook Download: EPUB
2015
John Wiley & Sons (Verlag)
978-1-118-70527-8 (ISBN)

Lese- und Medienproben

Complex Analysis - Jerry R. Muir
Systemvoraussetzungen
72,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
A thorough introduction to the theory of complex functions emphasizing the beauty, power, and counterintuitive nature of the subject Written with a reader-friendly approach, Complex Analysis: A Modern First Course in Function Theory features a self-contained, concise development of the fundamental principles of complex analysis. After laying groundwork on complex numbers and the calculus and geometric mapping properties of functions of a complex variable, the author uses power series as a unifying theme to define and study the many rich and occasionally surprising properties of analytic functions, including the Cauchy theory and residue theorem. The book concludes with a treatment of harmonic functions and an epilogue on the Riemann mapping theorem. Thoroughly classroom tested at multiple universities, Complex Analysis: A Modern First Course in Function Theory features: Plentiful exercises, both computational and theoretical, of varying levels of difficulty, including several that could be used for student projects Numerous figures to illustrate geometric concepts and constructions used in proofs Remarks at the conclusion of each section that place the main concepts in context, compare and contrast results with the calculus of real functions, and provide historical notes Appendices on the basics of sets and functions and a handful of useful results from advanced calculus Appropriate for students majoring in pure or applied mathematics as well as physics or engineering, Complex Analysis: A Modern First Course in Function Theory is an ideal textbook for a one-semester course in complex analysis for those with a strong foundation in multivariable calculus. The logically complete book also serves as a key reference for mathematicians, physicists, and engineers and is an excellent source for anyone interested in independently learning or reviewing the beautiful subject of complex analysis.

Jerry R. Muir, Jr., PhD, is Professor of Mathematics at The University of Scranton. He has authored over one dozen research articles in complex-flavored analysis, primarily on geometric function theory in several complex variables.

Preface ix

1 The Complex Numbers 1

1.1 Why? 1

1.2 The Algebra of Complex Numbers 3

1.3 The Geometry of the Complex Plane 7

1.4 The Topology of the Complex Plane 9

1.5 The Extended Complex Plane 16

1.6 Complex Sequences 18

1.7 Complex Series 24

2 Complex Functions and Mappings 29

2.1 Continuous Functions 29

2.2 Uniform Convergence 34

2.3 Power Series 38

2.4 Elementary Functions and Euler's Formula 43

2.5 Continuous Functions as Mappings 50

2.6 Linear Fractional Transformations 53

2.7 Derivatives 64

2.8 The Calculus of Real Variable Functions 70

2.9 Contour Integrals 75

3 Analytic Functions 87

3.1 The Principle of Analyticity 87

3.2 Differentiable Functions are Analytic 89

3.3 Consequences of Goursat's Theorem 100

3.4 The Zeros of Analytic Functions 104

3.5 The Open Mapping Theorem and Maximum Principle 108

3.6 The Cauchy-Riemann Equations 113

3.7 Conformal Mapping and Local Univalence 117

4 Cauchy's Integral Theory 127

4.1 The Index of a Closed Contour 127

4.2 The Cauchy Integral Formula 133

4.3 Cauchy's Theorem 139

5 The Residue Theorem 145

5.1 Laurent Series 145

5.2 Classification of Singularities 152

5.3 Residues 158

5.4 Evaluation of Real Integrals 165

5.5 The Laplace Transform 174

6 Harmonic Functions and Fourier Series 183

6.1 Harmonic Functions 183

6.2 The Poisson Integral Formula 191

6.3 Further Connections to Analytic Functions 201

6.4 Fourier Series 210

Epilogue 227

A Sets and Functions 239

B Topics from Advanced Calculus 247

References 255

Index 257

"The textbook is appropriate for students and can serve as a key reference for anyone interested in learning or reviewing the theory of complex functions of a complex variable." (Zentralblatt MATH, 2016)

Erscheint lt. Verlag 26.5.2015
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Technik
Schlagworte Analysis • Analytic Functions • Cauchy’s Integral Formula • Cauchy's theorem • Complex & Functional Analysis • Complex Analysis • complex numbers • conformal mapping • Fourier series • Funktionentheorie • Harmonic Functions • Komplexe Analysis u. Funktionalanalysis • Komplexe Funktion • Linear Fractional Transformations • <p>Mathematics • Mathematical Analysis • Mathematics • Mathematik • Mathematische Analyse • Nichtlineare u. komplexe Systeme • Nonlinear and Complex Systems • Physics • Physik • Residue Theorem • Riemann mapping theorem</p>
ISBN-10 1-118-70527-0 / 1118705270
ISBN-13 978-1-118-70527-8 / 9781118705278
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich