Optimal Transport for Applied Mathematicians
Springer International Publishing (Verlag)
978-3-319-20827-5 (ISBN)
Preface.- Primal and Dual Problems.- One-Dimensional Issues.- L^1 and L^infinity Theory.- Minimal Flows.- Wasserstein Spaces.- Numerical Methods.- Functionals over Probabilities.- Gradient Flows.- Exercises.- References.- Index.
"This book offers an excellent, exciting and enjoyable, tour through the theory of optimal transportation, with a very good choice of topics ... . It is well written and thorough and provides an excellent introduction to applied mathematicians ... . a carefully selected list of exercises, make it ideal either as a textbook for an advanced postgraduate of doctoral level course, or for independent study." (Athanasios Yannacopoulos, zbMATH 1401.49002, 2019)
"This book is very well written, and the proofs are carefully chosen and adapted. It is suitable for the researcher or the student willing to enter this field as well as for the professor planning a course on this topic. Thanks to the discussions at the end of each chapter and to the rich bibliography it is also a very good reference book." (Luigi De Pascale, Mathematical Reviews, January, 2017)
Erscheint lt. Verlag | 27.10.2015 |
---|---|
Reihe/Serie | Progress in Nonlinear Differential Equations and Their Applications |
Zusatzinfo | XXVII, 353 p. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 843 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Schlagworte | fluid mechanics • Fokker-Planck Equation • Gradient flows • measure theory • Monge-Ampère equation • optimal transport • Ordinary differential equations • Partial differential equations |
ISBN-10 | 3-319-20827-6 / 3319208276 |
ISBN-13 | 978-3-319-20827-5 / 9783319208275 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich