The Adjunction Theory of Complex Projective Varieties (eBook)

eBook Download: PDF
1995
418 Seiten
De Gruyter (Verlag)
978-3-11-087174-6 (ISBN)

Lese- und Medienproben

The Adjunction Theory of Complex Projective Varieties - Mauro C. Beltrametti, Andrew J. Sommese
Systemvoraussetzungen
159,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics.

The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject.

Editorial Board

Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil
Walter D. Neumann, Columbia University, New York, USA
Markus J. Pflaum, University of Colorado, Boulder, USA
Dierk Schleicher, Jacobs University, Bremen, Germany
Katrin Wendland, University of Freiburg, Germany

Honorary Editor

Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia

Titles in planning include

Yuri A. Bahturin, Identical Relations in Lie Algebras (2019)
Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019)
Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019)
Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021)
Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)

lt;P>"In fact, the book under review provides a systematic, comprehensive and utmost detailed account on classical and modern adjunction theory of complex projective varieties. The authors present a monograph, which incorporates all characteristic features of a self-contained textbook, of a research report that leads to the very recent achievements in the field, and of an encyclopedia which encompasses both history and present-day state of the matter. The authors have worked in the results from nearly 700 research papers (which appeared between 1897 and 1994), including more than 50 articles published by themselves (sometimes with co-authors), and they have managed to keep the text essentially self-contained and consistent. […] This is, mathematically and methodically, a great example of maximum efficiency in the literature on algebraic geometry. […] The material of the book is presented in encyclopedic thoroughness, indisputable rigour, and exemplary completeness. Quite undoubtedly, it will immediately become the standard text and reference book on adjunction theory in projective algebraic geometry." Zentralblatt für Mathematik

Erscheint lt. Verlag 3.6.2011
Reihe/Serie De Gruyter Expositions in Mathematics
ISSN
Verlagsort Berlin/Boston
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Geometrie / Topologie
Technik
ISBN-10 3-11-087174-2 / 3110871742
ISBN-13 978-3-11-087174-6 / 9783110871746
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 125,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich