The Adjunction Theory of Complex Projective Varieties (eBook)
418 Seiten
De Gruyter (Verlag)
978-3-11-087174-6 (ISBN)
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics.
The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject.
Editorial Board
Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil
Walter D. Neumann, Columbia University, New York, USA
Markus J. Pflaum, University of Colorado, Boulder, USA
Dierk Schleicher, Jacobs University, Bremen, Germany
Katrin Wendland, University of Freiburg, Germany
Honorary Editor
Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia
Titles in planning include
Yuri A. Bahturin, Identical Relations in Lie Algebras (2019)
Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019)
Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019)
Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021)
Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
lt;P>"In fact, the book under review provides a systematic, comprehensive and utmost detailed account on classical and modern adjunction theory of complex projective varieties. The authors present a monograph, which incorporates all characteristic features of a self-contained textbook, of a research report that leads to the very recent achievements in the field, and of an encyclopedia which encompasses both history and present-day state of the matter. The authors have worked in the results from nearly 700 research papers (which appeared between 1897 and 1994), including more than 50 articles published by themselves (sometimes with co-authors), and they have managed to keep the text essentially self-contained and consistent. […] This is, mathematically and methodically, a great example of maximum efficiency in the literature on algebraic geometry. […] The material of the book is presented in encyclopedic thoroughness, indisputable rigour, and exemplary completeness. Quite undoubtedly, it will immediately become the standard text and reference book on adjunction theory in projective algebraic geometry." Zentralblatt für Mathematik
Erscheint lt. Verlag | 3.6.2011 |
---|---|
Reihe/Serie | De Gruyter Expositions in Mathematics | ISSN |
Verlagsort | Berlin/Boston |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Technik | |
ISBN-10 | 3-11-087174-2 / 3110871742 |
ISBN-13 | 978-3-11-087174-6 / 9783110871746 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 125,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich