Multiple Classifier Systems -

Multiple Classifier Systems

12th International Workshop, MCS 2015, Günzburg, Germany, June 29 - July 1, 2015, Proceedings
Buch | Softcover
X, 231 Seiten
2015
Springer International Publishing (Verlag)
978-3-319-20247-1 (ISBN)
51,36 inkl. MwSt
This book constitutes the refereed proceedings of the 12th International Workshop on Multiple Classifier Systems, MCS 2015, held in Günzburg, Germany, in June/July 2015. The 19 revised papers presented were carefully reviewed and selected from 25 submissions. The papers address issues in multiple classifier systems and ensemble methods, including pattern recognition, machine learning, neural network, data mining and statistics. They are organized in topical sections on theory and algorithms and application and evaluation.

A Novel Bagging Ensemble Approach for Variable Ranking and Selection for Linear Regression Models.- A Hierarchical Ensemble Method for DAG-Structured Taxonomies.- Diversity Measures and Margin Criteria in Multi-class Majority Vote Ensemble.- Fractional Programming Weighted Decoding for Error-Correcting Output Codes.- Instance-Based Decompositions of Error Correcting Output Codes.- Pruning Bagging Ensembles with Metalearning.- Multi-label Selective Ensemble.- Supervised Selective Combination of Diverse Object-Representation Modalities for Regression Estimation.- Detecting Ordinal Class Structures.- Calibrating AdaBoost for Asymmetric Learning.- Building Classifier Ensembles Using Greedy Graph Edit Distance.- Measuring the Stability of Feature Selection with Applications to Ensemble Methods.- Suboptimal Graph Edit Distance Based on Sorted Local Assignments.- Multimodal PLSA for Movie Genre Classification.- One-and-a-Half-Class Multiple Classifier Systems for Secure Learning Against Evasion Attacks at Test Time.- An Experimental Study on Combining Binarization Techniques and Ensemble Methods of Decision Trees.- Decision Tree-Based Multiple Classifier Systems: An FPGA Perspective.- An Empirical Investigation on the Use of Diversity for Creation of Classifier Ensembles.- Bio-Visual Fusion for Person Independent Recognition of Pain Intensity.

Erscheint lt. Verlag 12.6.2015
Reihe/Serie Image Processing, Computer Vision, Pattern Recognition, and Graphics
Lecture Notes in Computer Science
Zusatzinfo X, 231 p. 40 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Schlagworte Applications • classification • classifier ensembles • Classifier Fusion • Clustering • Computer Science • conference proceedings • Cost-sensitive • Decision Tree • ensemble learning • Feature Selection • feature weighting • Informatics • Kernel Fusion • Metalearning • Movie genres • multi-class classification • Parallel genetic algorithm • pattern recognition • Research • Social tags • stability • Stepwise search algorithm • Variable selection • Visual Features
ISBN-10 3-319-20247-2 / 3319202472
ISBN-13 978-3-319-20247-1 / 9783319202471
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95